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ABSTRACT OF DISSERTATION

COMPUTER SIMULATION OF A HOLLOW-FIBER BIOREACTOR:
HEPARAN REGULATED GROWTH FACTORS-RECEPTORS BINDING

AND DISSOCIATION ANALYSIS

This thesis demonstrates the use of numerical simulation in predicting the behavior
of proteins in a flow environment.

A novel convection-diffusion-reaction computational model is first introduced to
simulate fibroblast growth factor (FGF-2) binding to its receptor (FGFR) on cell sur-
faces and regulated by heparan sulfate proteoglycan (HSPG) under flow in a biore-
actor. The model includes three parts: (1) the flow of medium using incompressible
Navier-Stokes equations; (2) the mass transport of FGF-2 using convection-diffusion
equations; and (3) the cell surface binding using chemical kinetics. The model con-
sists of a set of coupled nonlinear partial differential equations (PDEs) for flow and
mass transport, and a set of coupled nonlinear ordinary differential equations (ODEs)
for binding kinetics. To handle pulsatile flow, several assumptions are made includ-
ing neglecting the entrance effects and an approximate analytical solution for axial
velocity within the fibers is obtained. To solve the time-dependent mass transport
PDEs, the second order implicit Euler method by finite volume discretization is used.
The binding kinetics ODEs are stiff and solved by an ODE solver (CVODE) using
Newton’s backward differencing formula. To obtain a reasonable accuracy of the bio-
chemical reactions on cell surfaces, a uniform mesh is used. This basic model can be
used to simulate any growth factor-receptor binding on cell surfaces on the wall of
fibers in a bioreactor, simply by replacing binding kinetics ODEs.

Circulation is an important delivery method for natural and synthetic molecules,
but microenvironment interactions, regulated by endothelial cells and critical to the
molecule’s fate, are difficult to interpret using traditional approaches. Growth factor
capture under flow is analyzed and predicted using computer modeling mentioned
above and a three-dimensional experimental approach that includes pertinent cir-
culation characteristics such as pulsatile flow, competing binding interactions, and
limited bioavailability. An understanding of the controlling features of this process is
desired. The experimental module consists of a bioreactor with synthetic endothelial-
lined hollow fibers under flow. The physical design of the system is incorporated into
the model parameters. FGF-2 is used for both the experiments and simulations. The
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computational model is based on the flow and reactions within a single hollow fiber
and is scaled linearly by the total number of fibers for comparison with experimental
results. The model predicts, and experiments confirm, that removal of heparan sul-
fate (HS) from the system will result in a dramatic loss of binding by heparin-binding
proteins, but not by proteins that do not bind heparin. The model further predicts
a significant loss of bound protein at flow rates only slightly higher than average
capillary flow rates, corroborated experimentally, suggesting that the probability of
capture in a single pass at high flow rates is extremely low. Several other key param-
eters are investigated with the coupling between receptors and proteoglycans shown
to have a critical impact on successful capture. The combined system offers opportu-
nities to examine circulation capture in a straightforward quantitative manner that
should prove advantageous for biological or drug delivery investigations.

For some complicated binding systems, where there are more growth factors or
proteins with competing binding among them moving through hollow fibers of a
bioreactor coupled with biochemical reactions on cell surfaces on the wall of fibers,
a complex model is deduced from the basic model mentioned above. The fluid flow
is also modeled by incompressible Navier-Stokes equations as mentioned in the basic
model, the biochemical reactions in the fluid and on the cell surfaces are modeled
by two distinctive sets of coupled nonlinear ordinary differential equations, and the
mass transports of different growth factors or complexes are modeled separately by
different sets of coupled nonlinear partial differential equations. To solve this compu-
tationally intensive system, parallel algorithms are devised, in which all the numerical
computations are solved in parallel, including the discretization of mass transport
equations and the linear system solver Stone’s Implicit Procedure (SIP). A parallel
SIP solver is designed, in which pipeline technique is used for LU factorization and an
overlapped Jacobi iteration technique is chosen for forward and backward substitu-
tions. For solving binding equations ODEs in the fluid and on cell surfaces, a parallel
scheme combined with a sequential CVODE solver is used. The simulation results are
obtained to demonstrate the computational efficiency of the algorithms and further
experiments need to be conducted to verify the predictions.

KEYWORDS: Numerical simulation, laminar convection diffusion flow, mass trans-
port, fibroblast growth factor and receptor binding, parallel computing

Changjiang Zhang

September 15, 2011
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1 Introduction

The purpose of this chapter is to state the motivation of the proposed dissertation

research and give an introduction to computer modeling and simulation in the areas

of fluid dynamics, mass transfer, chemical reaction, cellular and molecular biochem-

istry. Simulation models are usually described by coupled nonlinear partial differen-

tial equations (PDEs) for fluid dynamics and mass transfer, and ordinary differential

equations (ODEs) for chemical reaction and cellular and molecular biochemistry.

By Moore’s law, the number of transistors that can be placed inexpensively on an

integrated circuit doubles approximately every two years. This trend has continued

for more than half a century, and it is expected to continue until 2015 or 2020 or

later [42, 51]. Today, computer capacity (processing speed, memory capacity, etc.) is

growing much more rapidly. High performance desktop computers, even laptops with

multi-core processors and graphics processing unit (GPU) technology, are commonly

used in homes, offices and research laboratories. These computers have more powerful

computational capacity than most middle-sized mainframe computers from the 1970’s

and 80’s. Problems that take a few minutes or even seconds of CPU time using

today’s computers would have taken years to complete using computers available two

decades ago [1]. In the meantime, computational cost has been reduced constantly

and substantially. According to current investigation, expenses for a given task have

been reduced by a factor of ten every eight years [8].

A direct consequence of this trend is that the modeling and simulation of complex

phenomena, such as multi-dimensional molecular binding that couples fluid flow and

chemical reactions, is made possible in practice. Most costly computer simulations

and visualizations running on high performance computers (cluster machines or even

personal computers) have become a reality. Technological advancement in computer

science had led to the rapid development of bioinformatics and computational system
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biology.

1.1 Motivation

Traditionally, research on fluid dynamics, mass transfer, chemical reaction, cellular

and molecular biochemistry has depended heavily on experimental and theoretical

approaches. The advantages of these two approaches are that the experimental ap-

proach produces more realistic results and the theoretical approach gives a clean

solution in formula form. However, both of these have some drawbacks. For the

experimental approach, test equipment is required and expensive in some cases. For

example, measurement in wind tunnel experiments is difficult and costly. Sometimes,

it is even impractical to perform experiments or measurements, like in vivo diagnos-

tics related to human beings or drug delivery research in human blood vessels or

capillaries. Instead, in vitro experiments and/or numerical simulations are used as

alternatives. The theoretical approach is usually restricted to simple geometries and

linear problems, and therefore it is not possible to obtain a theoretical solution for

most complicated geometries and nonlinear problems.

The numerical method, however, can overcome many of the drawbacks related to

experimental and theoretical approaches. It can cut the cost of experiments, apply

it to complicated nonlinear problems, and obtain a transient solution. Although it

may have some drawbacks, such as modeling issues, numerical errors, convergence

and stability issues, boundary conditions, etc. [1], these issues are easily recognized

and can be avoided in most cases.

One of the most important topics of this dissertation is the numerical simulation

of laminar convection-diffusion-reaction pulsatile flow in a bioreactor, an in vitro

experimental apparatus for cellular study. Since the flow in human blood vessels or

capillaries has similar properties, it can be used as a complementary tool to simulate

biochemical reactions in vitro. Examples of the applications include drug delivery and
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tumor therapy research in human blood vessels or capillaries, which are beneficial to

the health care of human beings.

Though there are several commercial software packages on the market that could

be used for similar research purposes, such as COMSOLr, these packages are either

too costly or too general, and can not be used for specific needs. In this research work,

we develop a software package to complement experiments, in order to study biochem-

ical processes, such as growth factors-receptors binding and dissociation analysis in a

bioreactor flow environment.

1.2 Modeling Procedure

The procedures involved in modeling and simulation usually include four steps [74]:

(1) set up a mathematical model;

(2) rewrite the mathematical model for computer simulation;

(3) develop a computer program;

(4) verify simulation results.

Generally, computer simulation often incurs a very low cost, though an initial cost

is required to develop a simulation program or purchase commercial simulation soft-

ware. It should be recognized that once a simulation program is created, the cost

in subsequent studies is usually negligible. Also, it is easy to modify the simulation

program to handle different situations.

This research focuses on the modeling and simulation of physical, biochemical and

cellular binding kinetics processes in flow conditions, which are governed by partial

differential equations (PDEs) and ordinary differential equations (ODEs). So, the

first step in the modeling procedure is to derive a set of PDEs or ODEs as the

mathematical model.

For flow dynamics and mass transport equations, they are usually defined by

a set of second-order partial differential equations. A general second-order partial
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differential equation in a standard form in a 2D Cartesian coordinate system can be

written as [1]:

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f(x, y)u = g(x, y) (1.1)

where a(x, y), b(x, y), c(x, y), d(x, y), e(x, y), and f(x, y) are functions of (x, y).

Eq. (1.1) can be classified as hyperbolic, parabolic and elliptic, based on the

values of a, b and c. The PDE is hyperbolic if b2 − 4ac > 0, parabolic if b2 − 4ac = 0

and elliptic if b2 − 4ac < 0. Hyperbolic or parabolic PDEs govern initial value or

initial boundary value problems, which are frequently called marching or propagation

problems. Elliptic PDEs govern boundary value problems, or equilibrium problems,

which include steady-state temperature distributions, incompressible inviscid flow,

and equilibrium stress distributions in solids.

The mathematical model of PDEs is not suitable for direct computer simulation.

The PDEs in the continuous domain must be discretized, so that the dependent

variables exist only at discrete points. Frequently-used discretization techniques in

numerical simulation include finite difference, finite element and finite volume meth-

ods. The finite difference method is easy to apply to discretizing differential equations

directly, easy to obtain higher order accuracy by using higher order difference, and

the coefficient matrix of the linear system obtained from implicit discretization is easy

to solve, but difficult to apply it to irregular domains. For finite volume and finite

element methods, the differential equations have to be written in integral form. The

major advantage of finite volume and finite element methods is their application in

irregular domains and use of fully unstructured grids composed of triangles and/or

quadrilaterals [4]. The finite volume method has an inherent flux conservation, which

is a desired feature in numerical simulation of fluid flow and mass transfer. This

explains why the finite volume method is so popular in applications of computational

fluid dynamics (CFD). However, both finite volume and finite element methods have

the drawback of higher computational cost in implicit discretization, due to a denser
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coefficient matrix. The selection of a discretization method depends on actual appli-

cations. For simple geometry, the finite difference method can be used for simplicity.

In the case of complex geometry with irregular boundaries, the finite volume or the

finite element method can be applied.

Biochemical reaction and cellular binding kinetics equations are usually defined

by a set of nonlinear ordinary differential equations. A general nonlinear ordinary

differential equation can be expressed in vector form as:

dy⃗

dt
= f(y⃗, t) (1.2)

Eq. (1.2) can be solved by the finite difference method by using backward differ-

encing formulation.

y⃗n = y⃗n−1 +∆tf(y⃗n) (1.3)

Newton’s method is used to solve Eq. (1.3) and the solution is

y⃗n = y⃗n−1 +∆t(I −∆tJ)−1y⃗n−1 (1.4)

where J = ∂f/∂y is the Jacobian matrix. This nonlinear system can be solved by a

ODE solver. For example, The CVODE solver [6] can be used with a user-supplied

Jacobian matrix.

Normally, the whole simulation system is a complicated one, with coupled PDEs

and ODEs, which should be calculated in a planned order. For example, in order

to calculate mass transport equations for growth factors competitive binding to their

receptors in capillaries or fibers of a bioreactor, two steps are needed. First, flow veloc-

ities and binding kinetics equations are calculated separately; second, mass transport

equations are calculated by using velocities obtained in the first step. The solution

of binding kinetics in the first step is used as an initial solution for mass transport

equations, if binding kinetics occur in the whole domain, or as boundary conditions,

if binding kinetics only occur on cell surfaces lined on the walls of fibers.
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1.3 Numerical Methods for PDEs

Numerical schemes, which are employed to convert governing PDEs to discrete alge-

braic expressions, are very important for the solution of equations in terms of accuracy,

stability and efficiency, and are usually problem dependent. Hyperbolic equations

can be solved very efficiently using explicit methods, in which only one unknown ap-

pears in each equation. High resolution schemes have been developed using explicit

discretization and flux limiters [81], such as the second order total variation dimin-

ishing (TVD) scheme [62], second order Monotone Upstream-centered Schemes for

Conservation Laws (MUSCL) type TVD scheme [86], third order piecewise parabolic

method (PPM) [9], Runge-Kutta methods, and higher order weighted essentially non-

oscillatory (WENO) scheme [72]. For these explicit schemes, there exists a common

drawback. They are not unconditionally stable. The stability of explicit numerical

schemes is confined by the Courant−Friedrichs−Lewy (CFL) condition [11].

For problems governed by elliptic PDEs, such as the steady-state heat conduction

equation, simultaneous equations have to be solved, which involves inversion of the

coefficient matrix. Such a matrix is usually sparse, and its detailed structure depends

on the dimensions of the problem and the discretization strategy. For parabolic equa-

tions, such as the transient heat conduction equation, the simple explicit method is

highly dissipative. The commonly used method is the implicit treatment of temporal

terms, and again, simultaneous algebraic equations have to be solved.

For one dimensional applications in fluid dynamics, such as 1D diffusion problems,

the coefficient matrix of the discrete algebraic equations is frequently tridiagonal

or block tridiagonal. A very efficient numerical algorithm, the tridiagonal matrix

algorithm (TDMA), also known as the Thomas algorithm (named after Llewellyn

Thomas), exists, running in linear time. It is a simplified form of the Gaussian

elimination method that can be used to solve tridiagonal systems of equations [10].

For multidimensional cases, however, the coefficient matrix is very difficult to invert
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directly. Due to the attractive features of the Thomas algorithm, a multi-dimensional

problem is frequently solved with multi-steps, such that a tridiagonal matrix is formed

for each step. Algorithms related to this technique include the alternating-direction-

implicit (ADI) method and fractional-step methods.

The ADI method is a finite difference method for solving parabolic and elliptic

PDEs, and most notably, it is used to solve the problem of heat conduction, or solve

diffusion equations, in two or more dimensions [1]. The advantage of the ADI method

is that the equations in every iteration have a simpler structure and are thus easier

to solve than traditional methods, such as the Crank-Nicolson method. The disad-

vantage is that the splitting techniques of the ADI method and the fractional-step

method do not work well in situations that are highly nonlinear, such as the strongly

coupled chemical reactions in flow conditions. Therefore, this research is focused on

the Krylov subspace iterative methods and incomplete LU factorization methods to

solve linear systems in simulation of various physical and biological phenomena which

are modeled by PDEs in a flow environment.

This dissertation is organized as follows. Chapter 2 gives a brief review of some

different methods of solving linear systems related to PDEs in computational fluid

dynamics and mass transfer, which are very important parts of this research. Iterative

Methods and Preconditioners are also discussed. Chapter 3 describes basic models

and numerical methods for performing simulations of pulsatile flow moving through

a hollow fiber cartridge, as well as methods used to analyze growth factor-receptor

binding and dissociation processes. Chapter 4 describes in detail how to combine

experiments and simulations, in order to study the endothelial cell capture of heparin-

binding growth factors under flow condition. Chapter 5 presents a parallel system

to simulate multiple proteins moving through a bioreactor coupled with competitive

binding in the fluid and on cell surfaces, in order to mimic complex bioreactions

in human blood vessels or capillaries. A novel parallel, Stone’s strongly implicit
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procedure solver, is introduced in Chapter 6. Conclusions, contributions and future

work are presented in Chapter 7.

Copyright c⃝ Changjiang Zhang 2011
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2 Iterative Methods and Preconditioners

The purpose of this chapter is to give a brief review of some different methods for

solving linear systems related to solving PDEs in computational fluid dynamics and

mass transfer, which are very important parts of this research. It will review direct

methods, stationary iterative methods, Krylov subspace-based iterative methods, pre-

conditioners, and Stone’s strongly implicit procedure (SIP) [80].

2.1 Direct Methods

2.1.1 Gaussian Elimination

The Gaussian elimination method is used for solving general linear systems of alge-

braic equations, Ax = b, where A is a square matrix and has the following form:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann


The algorithm of Gaussian elimination has two parts, forward elimination and back-

ward substitution. Forward elimination reduces a given system to either triangular

or echelon form, or results in a degenerate equation with no solution, indicating the

system has no solution. This is accomplished through the use of elementary row

operations. Backward substitution finds the solution of the linear system above.

For a linear system of n equations for n unknowns, the number of arithmetic

operations required by Gaussian elimination is on the order of O(n3). The Gaussian

elimination method is numerically stable for diagonally dominant or positive-definite

matrices. For general matrices, Gaussian elimination is usually considered to be stable

in practice if partial pivoting is used, even though some unstable examples exist [30].
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2.2 Stationary Iterative Methods

Stationary iterative methods are methods for solving a linear system of equations

Ax = b

where A is a given matrix and b is a given vector.

Stationary iterative methods are based on the relaxation of coordinates. Begin-

ning with an initial approximate solution, these methods modify the components of

approximation, one or a few at a time and in a certain order, until convergence is

reached and the criteria of relative errors are met. Each of these modifications, called

relaxation steps, is aimed at eliminating one or a few components of the residual

vector [66].

Stationary iterative methods can be expressed in the simple form:

xk = Bxk−1 + C

where neither B nor C depends upon the iteration count k [43].

Four main stationary methods are the Jacobi method, the Gauss-Seidel (GS)

method, the successive overrelaxation (SOR) method, and the symmetric successive

overrelaxation (SSOR) method.

The Jacobi method is based on solving for every variable locally, with respect to

the other variables. One iteration corresponds to solving for every variable once. It

is easy to understand and implement, but convergence is slow. The GS method is

similar to the Jacobi method, except that it uses updated values as soon as they are

available. The GS method generally converges faster than the Jacobi method, but

it is still relatively slow. The SOR method can be derived from the GS method by

introducing an extrapolation parameter. This method can converge faster than the

GS method by an order of magnitude. The SSOR method is useful as a preconditioner

for nonstationary methods. However, it has no advantage over the SOR method as a

stand-alone iterative method.
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2.2.1 Jacobian Iteration

Let xk
i denote the ith component of the kth iteration; therefore the Jacobi iteration

can be expressed as:

xk+1
i = a−1

ii

(
bi − Σj ̸=iaijx

k
j

)
This is a component-wise form of the Jacobi iteration. The Jacobi iteration uses

splitting in the following way:

A = D + (L+ U)

where D is the diagonal component of A. L and U are the strictly lower and upper

triangular components of A.

The Jacobi iteration can be rewritten in vector form as:

xk+1 = −D−1(L+ U)xk +D−1b

The Jacobi iteration matrix is:

MJ = −D−1(L+ U)

Note that D is diagonal and hence trivial to invert.

2.2.2 Gauss-Seidel Iteration

Similarly, the GS iteration overwrites the approximate solution with the new value

as soon as it is computed. For forward GS iteration, the new value can be expressed

as:

xk+1
i = a−1

ii

(
bi − Σj<iaijx

k+1
j − Σj>iaijx

k
j

)
The forward GS iteration uses the following splitting:

A = (D + L) + U

Note that D + L is a lower triangular, hence (D + L)−1 is easy to compute. The

forward GS iteration can be rewritten in a vector form as:

xk+1 = −(D + L)−1Uxk + (D + L)−1b
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The forward GS iteration matrix is:

MFGS = −(D + L)−1U

The backward GS iteration begins the update of x with the nth coordinate, rather

than the 1st, resulting in the splitting:

A = (D + U) + L

D+U is an upper triangular, and its inverse is also easy to compute. The backward

GS iteration can be rewritten in matrix form as:

xk+1 = −(D + U)−1Lxk + (D + U)−1b

The backward GS iteration matrix is:

MBGS = −(D + U)−1L

A symmetric GS iteration is a forward GS iteration followed by a backward GS

iteration. This leads to the iteration matrix:

MSGS = MBGSMFGS = (D + U)−1L(D + L)−1U.

When A is symmetric, or U = LT , we have:

MSGS = (D + U)−1L(D + L)−1U = (D + LT )−1L(D + L)−1LT .

2.2.3 Successive Overrelaxation Iteration

The SOR iteration modifies the GS iteration by adding a relaxation factor ω to the

linear system [66, 93]. The system of linear equations is rewritten as:

(D + ωL)x = ωb+ ((1− ω)D − ωU)x

where ω > 1 is a constant. The iteration matrix of SOR is:

MSOR = (D + ωL)−1((1− ω)D − ωU).
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The performance can be dramatically improved with ideal values of ω, but it still

can not compete with the Krylov methods. Another disadvantage of the SOR is that

it is often difficult to make the choice of relaxation factor ω, which depends on the

properties of the coefficient matrix A.

2.2.4 Symmetric Successive Overrelaxation Iteration

If the coefficient matrix A is symmetric, the SSOR method can produce an iteration

matrix similar to a symmetric matrix. The SSOR includes a forward SOR sweep and

a backward SOR sweep. This method is usually used as a preconditioner to other

iterative methods for symmetric matrices. The iteration matrix of the SSOR is:

MSSOR = (D + ωU)−1((1− ω)D − ωL)(D + ωL)−1((1− ω)D − ωU).

2.3 Krylov Subspace Based Iterative Methods

Krylov subspace iteration methods are considered to be the most useful iterative

techniques available for solving large linear systems. These techniques are based on

projections, both orthogonal and oblique, onto Krylov subspaces, which are subspaces

spanned by vectors of the form p(A)v, where p is a polynomial. In short, these

techniques approximate A−1b by p(A)b, where p is a ”good” polynomial [66].

2.3.1 Conjugate Gradient

The Conjugate Gradient (CG) method is intended to solve symmetric positive definite

(SPD) linear systems. A matrix A is symmetric if A = AT and positive definite if

its eigenvalues are all positive, i.e., xTAx > 0 for all x ̸= 0. For a positive definite

matrix, solving the system of equations Ax = b is equivalent to finding the minimum

of the following equation, with respect to all the xi [19].

ϕ(x) =
1

2
xTAx− xT b =

1

2

n∑
j=1

n∑
i=1

aijxixj −
n∑

i=1

xibi

13
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Note that if ϕ(x) is the minimal value of Rn then

∇ϕ(x̃) = Ax̃− b = 0

and hence x̃ = x.

One of the conjugate gradient algorithms is presented in Algorithm 1 [66].

Algorithm 1 Conjugate Gradient Algorithm

1: Initialization: r0 = b− Ax0, p0 = r0
2: for j = 0, · · · , until convergence or j < jmax do
3: αj = (rj, rj)/(Apj, pj)
4: xj+1 = xj + αjpj
5: rj+1 = rj − αjApj
6: if rj+1 is sufficiently small then exit for loop
7: βj = (rj+1, rj+1)/(rj, rj)
8: pj+1 = rj+1 + βjpj
9: end for
10: the result is xk+1

This is the most commonly used algorithm. In Algorithm 1, only four vectors

need to be stored, x, p, r, and Ap. There are several alternative formulations [43, 66],

such as the Preconditioned Conjugate Gradient (PCG) and the Split Preconditioned

Conjugate Gradient (SPCG) algorithms.

The conjugate gradient method can be applied to an arbitrary n-by-m matrix by

applying it to normal equations ATA and right-hand side vector AT b, since ATA is a

symmetric positive-semidefinite matrix for any A. The result is a conjugate gradient

on the normal equations (CGNR):

ATAx = AT b

As an iterative method, it is not necessary to form ATA explicitly in memory but only

to perform the matrix-vector and transposed matrix-vector multiplications. Therefore

CGNR is particularly useful when A is a sparse matrix, since these operations are

usually extremely efficient. However, the drawback is that the condition number

κ(ATA) = κ2(A), so the rate of convergence of CGNR may be slow and the quality

of the approximate solution may be sensitive to roundoff errors.

14
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2.3.2 Bi-Conjugate Gradient Stabilized (BiCGStab)

The BiCGStab method was proposed by van der Vorst [85], with the purpose of

extending the CG algorithm to solve nonsymmetric linear systems. It is a variant of

the biconjugate gradient (BiCG) method, and it has faster and smoother convergence

than the original BiCG, as well as other variants such as the conjugate gradient

squared (CGS) method . The BiCGStab algorithm is summarized in Algorithm 2

[43].

Algorithm 2 Unpreconditioned BiCGStab

1: r0 = b− Ax0

2: Choose an arbitrary vector r̂0 = r0
3: ρ0 = α = ω0 = 1
4: v0 = p0 = 0
5: for j = 0, · · · , until convergence or j < jmax do
6: ρj = (r̂0, rj−1)
7: β = (ρj/ρj−1)(α/ωj−1)
8: pj = rj−1 + β(pj−1 − ωj−1vj−1)
9: vj = Apj
10: α = ρj/(r̂0, vj)
11: s = rj−1 − αvj
12: t = As
13: ωj = (t, s)/(t, t)
14: xj = xj−1 + αpj + ωjs
15: rj = s− ωjt
16: end for

In Algorithm 2, seven vectors need to be stored, x, b, r, r̂0, p, v and t. Four

matrix-vector products are required in each iteration of the algorithm.

2.3.3 General Minimum Residual (GMRES)

The GMRES method is a projection method that minimizes the residual norm over

all vectors in x0+Kk, where x0 is the initial value and Kk is the k-th Krylov subspace

with v1 = r0/∥r0∥2 [66]. The k-th Krylov subspace is:

Kk(A, r0) = span(r0, Ar0, · · · , Ak−1r0)

15



www.manaraa.com

where r0 = b− Ax0.

This method seeks an approximate solution xk from the affine subspace x0 + Kk of

dimension k by imposing the Galerkin condition:

b− Axm⊥Kk

The kth GMRES iteration is equivalent to the least squares problem:

minimizex∈x0+Kk
∥b− Ax∥2.

One implementation of the GMRES can be written as Algorithm 3 [66].

Algorithm 3 GMRES

1: Compute r0 = b− Ax0, β = ∥r0∥2, and v1 = r0/β
2: Define the (m+ 1)×m matrix H̄m = hi,j(1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m)
3: Set H̄m = 0
4: for j = 1, · · · ,m do
5: Compute wj = Avj
6: for i = 1, · · · , j do
7: hi,j = (wj, vi)
8: wj = wj − hi,jvi
9: end for
10: hj+1,j = ∥wj∥2
11: If hj+i,j = 0 set m = j and goto 14
12: vj+1 = wj/hj+1,j

13: end for
14: Compute ym, the minimizer of ∥βe1 − H̄my∥2
15: Compute xm = x0 + Vmym

2.4 Preconditioners

A preconditioner to a given linear system can be any form of explicit or implicit

modifications of the original system that makes it easier and faster to solve by an

iterative method [66]. For the original system Ax = b, a preconditioned system

M−1Ax = M−1b can be formed, where the preconditioning matrix M−1 can be in-

expensively applied to a matrix-vector product. The construction of M−1 can be

performed in different ways depending on a variety of applications.

16
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2.4.1 Jacobi, GS, SOR, and SSOR Preconditioners

A fixed-point iteration for the linear system Ax = b has the form [66]:

xk+1 = M−1Nxk +M−1b = Gxk + f

where A = M − N , M and N are the splitting of A,f = M−1b, and G = M−1N =

I −M−1A.

For the Jacobian iteration, the preconditioning matrix is M = D, where D is the

diagonal of A.

For the GS iteration, the preconditioning matrix is M = (D + L) for a forward

sweep and M = D+U for a backward sweep, where L and U are the strict lower and

upper parts of A, respectively.

For the SOR iteration, the preconditioning matrix is in the form of M = (D+ωL)

or M = (D + ωU).

The preconditioning matrix for the SSOR iteration isM = (D+ωL)D−1(D+ωU).

2.4.2 ILU(0) Preconditioner

The ILU(0) Preconditioner is an incomplete LU factorization of A with no fill-in, i.e.,

the zero pattern of matrix M = LU is precisely the same as that of matrix A. For

a 2D Laplace’ equation, the coefficient matrix A is five-diagonal, but matrix M is

seven-diagonal. The entries in these extra diagonals are called fill-in elements. The

ILU(0) factorization can be stated as any pairs of matrices L (unit lower triangular)

and U (upper triangular), such that the elements of A − LU are zero in locations

where the elements of A are not zero. For any arbitrary matrix A, let NZ(A) denote

any nonzero elements in A, i.e., the set of pairs (i, j), such that ai,j ̸= 0, where

1 ≤ i, j ≤ n. The algorithm of ILU(0) factorization can be written as Algorithm 4

[66].
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Algorithm 4 ILU(0)

1: for i = 2, · · · , n do
2: for k = 1, · · · , i− 1 do
3: if (i, k) ∈ NZ(A) then
4: Compute ai,k = ai,k/ak,k
5: for j = k + 1, · · · , n do
6: if (i, j) ∈ NZ(A) then
7: Compute ai,j = ai,j − ai,kak,j
8: end if
9: end for
10: end if
11: end for
12: end for

2.4.3 ILU(p) Preconditioner

The accuracy of the ILU(0) incomplete LU factorization may be insufficient to yield

an adequate rate of convergence. More accurate Incomplete LU factorizations are

often more efficient, as well as more reliable. These more accurate factorizations will

differ from ILU(0) in that they allow some fill-ins [66].

The ILU(p) Preconditioner allows some fill-ins to increase the accuracy and im-

prove the rate of convergence, where p is the level of fill.

In an ILU(p), all fill-in elements with a level of fill less than p are kept. The higher

the level, the smaller the elements. The initial level of fill of an element ai,j of a sparse

matrix A is defined by levi,j = 0 if ai,j ̸= 0 or i = j, and levi,j = ∞ otherwise. During

the construction, the level of fill is updated by levi,j = min(levi,j, levi,k + levk,j + 1).

Let ai,∗ indicate the ith row of A, and let ai,j indicate the entry of A. The algorithm

for ILU(p) factorization can be written as Algorithm 5 [66].

2.4.4 ILUT Preconditioner

Incomplete factorizations, which rely on the levels of fill, are blind to numerical values

because elements that are dropped depend only on the structure of A. This can cause

some difficulties for realistic problems. A few alternative methods are available which
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Algorithm 5 ILU(p)

1: Initialization
2: for ai,j ̸= 0 do
3: lev(ai,j) = 0
4: end for
5: for i = 2, · · · , n do
6: for k = 1, · · · , i− 1 do
7: if lev(ai,k) ≤ p then
8: Compute ai,k = ai,k/ak,k
9: Compute ai,∗ = ai,∗ − ai,kak,∗
10: levi,j = min(levi,j, levi,k + levk,j + 1)
11: end if
12: end for
13: for each ai,j in row i do
14: if lev(ai,j) > p then
15: ai,j = 0
16: end if
17: end for
18: end for

are based on dropping elements in the Gaussian elimination process, according to

their magnitude rather than their locations. The ILUT Preconditioner algorithm has

two dropping steps with two parameters, p and τ . The first step is to drop any

element wk such that wk < τi, where w is a full length working row and wk is the k-th

entry of this row. τi is relative tolerance, obtained by multiplying τ by the 2-norm of

the i-th row. The second step is to drop any element in the row that is less than the

relative tolerance τi, keeping only the p largest elements in the L part, and p largest

elements in the U part of the row, in addition to the diagonal element. Therefore,

p can be viewed as a parameter that helps control memory usage, while τ helps to

reduce computational cost. An algorithm of ILUT factorization can be written as

Algorithm 6 [66].

2.5 Stone’s SIP Method

LU decomposition is an excellent general purpose linear equation solver. The biggest

disadvantage is that it fails to take advantage of coefficient matrix A as a sparse
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Algorithm 6 ILUT

1: Initialization
2: for i = 1, · · · , n do
3: w = ai,∗
4: for k = 1, · · · , i− 1 do
5: if wk ̸= 0 then
6: wk = wk/ak,k
7: if wk < τ∥w∥2 then
8: wk = 0
9: end if
10: if wk ̸= 0 then
11: w = w − wkuk,∗
12: end if
13: end if
14: end for
15: Apply dropping rule to row w
16: for j = 1, · · · , i− 1 do
17: li,j = wj

18: end for
19: for j = i, · · · , n do
20: ui,j = wj

21: end for
22: w = 0
23: end for
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matrix. The LU decomposition of a sparse matrix is usually not sparse; thus, for

large system of equations, LU decomposition may require a prohibitive amount of

memory and arithmetical operations.

In preconditioned iterative methods, if the preconditioner matrix M is a good

approximation of coefficient matrix A, then the convergence is faster. Thus, it may

be a good idea to use approximate factorization LU of A as iteration matrix M .

Stone proposed a version of an incomplete lower-upper decomposition method for

solving such a sparse linear system of equations in 1968, also known as the strongly

implicit procedure (SIP) [80]. The method uses an incomplete LU decomposition,

which approximates the exact LU decomposition, in order to generate an iterative

solution. This method is designed for an equation system arising from the discretiza-

tion of partial differential equations, and it was first used as a pentadiagonal system

obtained while solving an elliptic partial differential equation in a two dimensional

space by a finite difference method. This method does not apply to a general sys-

tem of equations, but it does apply to a sparse linear system of equations arising in

computational fluid dynamic problems.

An algorithm of SIP can be written as Algorithm 7 [19, 80].

Copyright c⃝ Changjiang Zhang 2011
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Algorithm 7 Ston’s Strongly Implicit Procedure(SIP)

1: For the sparse linear system Ax = b
2: calculate Incomplete LU factorization of matrix A
3: Ax = (M −N)x = (LU −N)x = b
4: Mxk+1 = Nxk + b , with ∥M∥ ≫ ∥N∥
5: Mxk+1 = LUxk+1 = ck

6: LUxk = L(Uxk+1) = Lyk = ck

7: set a guess
8: k = 0, xk

9: rk = b− Axk

10: while ∥rk∥2 > ϵ do
11: evaluate new right hand side
12: ck = Nxk + b
13: solve Lyk = ck by forward substitution
14: yk = L−1ck

15: solve Uxk+1 = yk by back substitution
16: xk+1 = U−1yk

17: end while
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3 A Numerical Study of Pulsatile Flow Through a Hollow Fiber
Cartridge: Growth Factor-Receptor Binding and Dissociation Analysis

3.1 Introduction

The binding of fibroblast growth factor-2 (FGF-2) to its cell surface receptor (FGFR)

and the role of heparan sulfate proteoglycans (HSPG) in regulating the process for

endothelial cells has been of interest for many years because of their roles in cell

signaling and cellular proliferation, processes which are important for angiogenesis.

Certainly control of these cells which line blood vessels is likely to be important in

being able to control tumor growth and wound healing. In the past two decades,

with the development of high performance computers, several computational models

of FGF-2 binding to its receptor FGFR and regulated by HSPG have been proposed

[13, 17, 20, 26, 27, 38, 48, 55]. Nugent and Edelman were among the earliest re-

searchers, developing a simple model, involving these three species, FGF-2, FGFR

and HSPG. They measured kinetic binding rate constants experimentally and their

results provided a foundation for investigating the complexity of FGF-2 binding. Nu-

gent, Forsten-Williams and coworkers introduced more complexity into their models

with dimerization and formation of higher order species. Filion and Popel proposed a

model of FGF-2 interactions with cell surface receptors including diffusive transport

within the culture dish [20]. Ibrahimi and coworkers proposed a simple model for

the stepwise assembly of a ternary FGF-2-FGFR-HSPG complex [38]. Not like the

previous models for the kinetic assembly of a ternary complex in which binary FGF-

2-FGFR or FGFR-HSPG complexes are intermediates, they claimed that FGFR and

HSPG are unbound in the absence of FGF-2 ligand, and the availability of FGF-

2 results in formation of initial FGF-2-HSPG complexes, which promotes the rapid

binding of FGFR and creates ternary complexes capable of undergoing dimerization

and subsequent FGFR activation. Forsten-Williams and coworkers took their model

a step further by linking their model to experimental activation of ERK 1/2, an
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important intracellular signaling pathway component [27]. These previous modeling

systems are based on culture environment.

This chapter addresses the competitive binding of some basic models, in which only

one growth factor (such as FGF-2) binds to its receptors (such as FGFR, HSPG, etc.)

in a flow environment to mimic kinetics occur on cell surfaces in blood capillaries.

No competitive binding occurs in the solution. The whole model consists of three

coupled parts [71, 96]: (1) the medium flow part uses the incompressible Navier-

Stoke equations; (2) the convective and diffusive mass transport of a growth factor

in the flow uses transport equations; (3) the binding kinetics on cell surfaces uses a

set of ordinary differential equations.

3.2 Simulation Environment

In order to investigate the quantitative properties of the growth factor (FGF-2) bind-

ing, one-pass experiments (i.e., no recycling of the fluid through the cartridge) and

simulations have been set up. Fig. 3.1 is a diagram of the hollow fiber cartridge sys-

tem used in the experiments [50]. The growth factor (FGF-2) is injected into the left

sampling port and the pump is turned on. The fluid is pumped into the cartridge

and the growth factor (FGF-2) enters into twenty hollow-fiber capillaries, which are

coated with endothelial cells on the wall. Fluid from the capillaries is pooled in the

right outlet reservoir and collected in tubes approximately every ten seconds during

one-pass experiments.

3.3 Modeling Process

The geometric model is based on the experimental one and illustrated in Fig. 3.2.

The flow is pulsatile. So, the simulation cost can be greatly reduced by finding some

analytical solution to the velocity, instead of calculating it numerically. The walls of

the hollow-fiber capillaries are assumed to be rigid and nonporous. In addition, the
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Figure 3.1: Hollow fiber cartridge system from FiberCellr.

following assumptions are made: (1) All of the twenty hollow-fiber capillaries have

the same dimensions, flow, and cell densities; (2) The flow is steady, axisymmetric

and laminar, for simplicity, entrance effects are ignored [35]; (3) The fluid is incom-

pressible, Newtonian, viscous and isothermal; (4) The endothelial cells are distributed

evenly on the wall of the hollow-fiber capillaries and tightly packed.

The model consists of three coupled parts: (1) the medium flow equations; (2) the

convective and diffusive mass transport equations of the growth factor (FGF-2) in

the flow; (3) the competitive binding kinetics equations [71, 96]. The binding kinetics

of the simulation is based on Forsten-Williams et al. 2005 model [27].

3.3.1 Medium Flow Equations

Because of the axis-symmetry of the hollow-fiber capillaries, the model can be sim-

plified from 3D to 2D. Based on the above assumptions, the governing equations of
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Figure 3.2: The diagram of modeling process.

the model are given by [19, 71, 94]:

The mass conservation equation:

∂u

∂x
+

v

r
+

∂v

∂r
= 0 (3.1)

The radial momentum equation:

ρ(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r
) +

∂p

∂r
= µ(

1

r

∂v

∂r
+

∂2v

∂x2
+

∂2v

∂r2
− v

r2
) (3.2)

The axial momentum equation:

ρ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
) +

∂p

∂x
= µ(

1

r

∂u

∂r
+

∂2u

∂x2
+

∂2u

∂r2
) (3.3)

where ρ is the density, µ is the viscosity of the medium and it is a constant due

to Newtonian incompressible flow, p is the dynamic pressure, u is the axial velocity,

and v is the radial velocity.

The above PDEs can be computed numerically, as described in [71]. They can

also be calculated theoretically in some special cases, such as described below.
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If these equations are restricted to only fully developed region of the flow, Eq. (3.1)

reduces to:

v
r
+ ∂v

∂r
= 0, so v ≡ 0, and ∂p

∂r
≡ 0

Eq. (3.2) can be eliminated. Eq. (3.3) reduces to:

ρ
∂u

∂t
+

∂p

∂x
= µ(

1

r

∂u

∂r
+

∂2u

∂r2
) (3.4)

Eq. (3.4) is the simplified form on which the classical solution for fully developed,

steady, and pulsatile flow is based.

If the fiber is assumed to be rigid, the velocity of u is a function of r and t only,

and pressure p is a function of x and t only, that is, u=u(r,t),p=p(x,t). For oscillatory

flow, if the steady and oscillatory parts of velocity and pressure are identified by

subscripts ”s” and ”ϕ”, respectively, to isolate the oscillatory flow problem, we write

u(r, t) = us(r) + uϕ(r, t) and p(x, t) = ps(x) + pϕ(x, t)

Substituting these into Eq. (3.4), we obtain:

∂ps
∂x

− µ(
1

r

∂us

∂r
+

∂2us

∂r2
) + ρ

∂uϕ

∂t
+

∂pϕ
∂x

− µ(
1

r

∂uϕ

∂r
+

∂2uϕ

∂r2
) = 0 (3.5)

Suppose pressure gradient is ∂p
∂t

= ks + kϕ(t). Eq. (3.5) can be separated into the

steady and oscillatory parts.

For steady part equation:

∂ps
∂x

− µ(
1

r

∂us

∂r
+

∂2us

∂r2
) = 0 (3.6)

The solution is us =
ks
4µ
(r2 −R2).

The volumetric flow rate qs = Nf

∫
us2πrdr = −ksNfπR

4

8µ
, or ks = − qs8µ

NfπR4 , thus,

us =
2qs

NfπR4 (R
2 − r2) = 2qs

NfπR2 (1− r2

R2 ),

where Nf (= 20) is the number of fibers in the cartridge.

For oscillatory part equation:

µ(
1

r

∂uϕ

∂r
+

∂2uϕ

∂r2
)− ρ

∂uϕ

∂t
= kϕ(t) (3.7)
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Let kϕ(t) = kse
jωt = ks(cosωt + isinωt) = kϕR + ikϕI and uϕ(r, t) = Uϕ(r)e

iωt,

Eq. (3.7) becomes:

1

r

dUϕ

dr
+

d2Uϕ

dr2
− iα

R2
Uϕ =

ks
µ

(3.8)

where α =
√

ρω
µ
R.

Combining boundary conditions Uϕ(R) = 0 and |Uϕ(0)| < ∞, the solution is

Uϕ(r) =
iksR2

µα2 (1− J0(ζ)
J0(Λ)

) where Λ = ( i−1√
2
)α, ζ = Λ r

R
, and J0(Z) is the Bessel functions

of the first kind of order zero.

Therefore,

uϕ(r, t) =
iksR

2

µα2
(1− J0(ζ)

J0(Λ)
)eiωt (3.9)

or

uϕ(r, t) =
−ksR

2

4µ
((1− r2

R2
)− iα2

16
(3− 4r2

R2
+

r4

R4
))eiωt (3.10)

When oscillatory flow is at low frequency, that is α < 1.0, the second part in Eq. (3.10)

can be ignored and it becomes:

uϕ(r, t) =
−ksR

2

4µ
(1− r2

R2
)eiωt (3.11)

Let kϕ(t) = kϕR, then:

u(r, t) = us(r) + uϕ(r, t) =
2qs

NfπR2
(1− r2

R2
)(1 + cosωt) (3.12)

The distance downstream from the fiber entrance to where flow becomes fully

developed is called the entrance length, symbolized Le. The entrance length required

for a fully developed velocity profile to form in laminar flow has been expressed by

Langhaar according to [89]:

Le = 0.0575×Re×D = 0.0575× ρD2V

µ
(3.13)

where D represents the inside diameter of the fiber, Re is the Reynolds number, ρ is

the density of the fluid, µ is the viscosity of the fluid, and V is the mean fluid velocity.
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When the average volumetric flow rate q is 0.67 ml/min for the whole cartridge,

the mean fluid velocity for one fiber V will be 0.001451 m/s. In the current study,

ρ = 1000kg/m3, and µ = 0.001Pa · s, Le is around 0.004 cm, which is much less than

one percent of the length of the fiber (12 cm). Even for some higher flow rates, such

as q=6.7 ml/min, Le ≈ 0.04 cm, it is still less than one percent of the length of the

fiber. Thus, the flow in the whole fiber is treated as fully developed, and the entrance

effects are ignored.

Eq. (3.12) is used as an approximate analytical solution of u during the simulation,

and Eq. (3.10) can be used as a general solution to a pulsatile pressure gradient

function.

3.3.2 Mass Transport Equations

The mass transport equation for the growth factor (FGF-2) consists of two mech-

anisms: convection and dissipation. Convection describes the transport of local

components along the streamlines of the flow. Dissipation describes the diffusive

transport of components due to concentration gradient. The mass must be conserved.

Generally, the mass transport equation can be expressed as [71]:

∂ρϕ

∂t
+∇ · (ρu⃗ϕ) = ∇ · (Kd∇ϕ) + S(ϕ) (3.14)

where ϕ is the concentration, Kd is the diffusion coefficient, ∂ρϕ
∂t

is the transient term,

∇ · (ρu⃗ϕ) is the convection term, ∇ · (Kd∇ϕ) is the diffusion term, and S(ϕ) is the

source term.

In the model, the density ρ is constant due to incompressible flow. The mass

transport of the growth factor (FGF-2) in a circular hollow-fiber can be described by

the following equation [71]:

∂ϕ

∂t
+

1

r

∂(rvϕ)

∂r
+

∂(uϕ)

∂x
=

1

r

∂

∂r
(rKd

∂ϕ

∂x
) +

∂

∂x
(Kd

∂ϕ

∂x
) + F (ϕ, t, x) (3.15)

where ϕ is the concentration of the growth factor (FGF-2), u and v are the axial

and the radial velocities, respectively, Kd is the molecular diffusion coefficient and
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treated as a constant in both radial and axial directions, and F (ϕ, t, x) is the rate of

change due to the kinetic transformation of the growth factor (FGF-2) binding to its

receptors on cell surfaces.

If the flow in the fiber is assumed to be fully developed, Eq. (3.15) can be simplified

as:

∂ϕ

∂t
+

∂(uϕ)

∂x
=

1

r

∂

∂r
(rKd

∂ϕ

∂x
) +

∂

∂x
(Kd

∂ϕ

∂x
) + F (ϕ, t, x) (3.16)

The boundary conditions of Eq. (3.16) are:

(1) ∂ϕ
∂r

= 0 at r = 0, reflecting symmetry of the flow along the fiber centerline.

(2) ∂ϕ
∂r

= F (ϕ, t, x) at r = R, reflecting binding rate of the growth factor (FGF-2)

on cell surfaces on the wall of the fiber.

(3) ϕ(t) = ϕent(t) at x = 0, assuming well mixed entrance flow, with uniform

concentration along the fiber radius.

The Mass Transport Equation Discretization

The mass transport equation is the most critical part of the whole computational

model. It is preferable to solve it with a reasonable accuracy. In the current study, the

second order accuracy is enough considering the accuracy of the experimental results.

To achieve the second order time accuracy, a quadratic backward approximation

for the time derivative term is used. To maintain numerical stability as well as to

achieve second order spatial accuracy, a deferred correction numerical strategy is used

[19, 71]. This is a combination of the first order upwind differencing and the second

order central differencing, as shown in the following formula:

F = FL + λ(FH − FL)old (3.17)

where F is the approximation of surface integrals or the net flux through the control

volume boundary, FL stands for the approximation by some lower-order scheme, such

as the first order upwind differencing scheme (UDS) in this research, FH is the higher-

order approximation, such as the second order central differencing scheme (CDS), and
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Figure 3.3: The finite volume notation of control volumes in axisymmetric coordi-
nates, (A) the control volume, (B) the north boundary control volume.

λ is the blending factor (0 ≤ λ ≤ 1). The term in brackets is evaluated using values

from the previous iteration, as indicated by the superscript ’old’ [19]. The diffusive

terms are discretized by the central difference method. Overall, the second order

accuracy is achieved for time and space.

The detailed discretization is illustrated as follows.

By using the finite volume method, Eq. (3.16) could be written as:

3(ρϕ)n+1
P − 4(ρϕ)nP + (ρϕ)n−1

P

2δt
+ (Je − Jw) + (Jn − Js) = Sc + SPϕP (3.18)

where Sc and SP are the results of source term linearization, Je = Fe − De, Jw =

Fw −Dw, Jn = Fn −Dn, Js = Fs −Ds are the convection-diffusion fluxes at each of

the four interfaces of the control volume P.

The notations of spatial discretization in Eq. (3.18) is illustrated in Fig. 3.3 (A),

where the uppercase letters indicate the center of the control volumes, and the low-

ercase letters indicate the interfaces between neighboring control volumes. Using

deferred correction [19], the convection flux can be written as a mixture of upwind

and central difference schemes. The convection flux in the axial direction could be
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written as:

(Fe − Fw)
n = (F u

e − F u
w)

n + λ((F c
e − F c

w)− (F u
e − F u

w))
n−1

in which

F u
e = max ((ρu)eδrj, 0)ϕP +min((ρu)eδrj, 0)ϕE

F u
w = max((ρu)wδrj, 0)ϕW +min((ρu)wδrj, 0)ϕP

F c
e = (ρu)eδrj(1− αe)ϕP + (ρu)eδrjαeϕE

F c
w = (ρu)wδrj(1− αw)ϕW + (ρu)wδrjαwϕP

where λ = (0 ∼ 1) is a parameter, and the superscripts n and n−1 indicate taking

the value from the current and previous iterations, respectively, αe and αw are the

interpolation factors, and are defined as: αe = xe−xP

xE−xP
, αw = xP−xw

xP−xW
. For uniform

mesh, αe = αw = 1/2.

Thus, we have:

F c
e = (ρu)eδrj(ϕP + ϕE)

F c
w = (ρu)wδrj(ϕW + ϕP )

The convection flux in the radial direction could be applied in a similar way. In

this research, the velocity in the radial direction v is totally ignored, therefore, no

convection flux is considered.

The diffusion fluxes are defined as:

De = D
rj(ϕE−ϕP )

xE−xP
, Dw = D

rj(ϕP−ϕW )

xP−xW
, Dn = D ri(ϕN−ϕP )

rN−rP
, Ds = D ri(ϕP−ϕS)

rP−rS
.

where D is the diffusion coefficient, and is treated as a constant.

Substituting everything into Eq. (3.18), a set of algebraic equations are obtained

in the following form:

ASϕS + AWϕW + APϕP + AEϕE + ANϕN = b (3.19)
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The coefficients of Eq. (3.19) consist of a pentadiagonal matrix, and are given by:

AN = −D
δxirn

rN − rP

AS = −D
δxirs

rP − rS

AE = min((ρu)eδrj, 0)−D
δrjrP

xE − xP

AW = −max((ρu)wδrj, 0)−D
δrjrP

xP − xW

AP =
3ρrP δxiδrj

2δt
− (AW + AS + AE + AN)

The right hand side vector is given by:

b = (Sc + SP )rP δxiδrj + (
2ρϕn

P

δt
− ρϕn−1

P

2δt
)rP δxiδrj − λ(F c

e − F u
e − F c

w + F u
w)

The matrix of the equations can be solved by Stone’s SIP [80] solver, or some other

suitable solver, such as BiCGStab solver. Stone’s SIP solver is preferred due to its

faster convergence and simpler implementation.

The North Boundary Condition Discretization

The north boundary condition discretization is worth mentioning, because the binding

kinetics occurs on the north boundary or cell surfaces of the wall. Fig. 3.3 (B) shows

the north boundary control volume.

Based on Fick’s first law, diffusive flux in one dimension is expressed as J = Kd
∂ϕ
∂r
,

where Kd is the diffusive coefficient or diffusivity of the growth factor (FGF-2) in the

solution, and regarded as a constant here. The north boundary condition is:

∂ϕ

∂r
= f =

q

Kd

(3.20)

where q is the boundary flux.

By using one-side difference, then:

(
∂ϕ

∂r
)n = β

ϕN − ϕP

rN − rP
+ (1− β)

ϕP − ϕS

rP − rS
(3.21)
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where β = α+2
α+1

, and α = rP−rS
rN−rP

= 2, so β = 4
3
. By using finite volume method [19],

Eq. (3.20) can be discretized as:

4

3

ϕN − ϕP

rN − rP
− 1

3

ϕP − ϕS

rP − rS
=

qN
Kd

or

ϕN = (1 +
1

4

rN − rP
rP − rS

)ϕP − 1

4

rN − rP
rP − rS

ϕS +
3

4

rN − rP
Kd

qN

Therefore:

ANϕN = AN(1 +
1

4

rN − rP
rP − rS

)ϕP − AN
1

4

rN − rP
rP − rS

ϕS + AN
3

4

rN − rP
Kd

qN

AP = AP + AN(1 +
1

4

rN − rP
rP − rS

)

AS = AS − AN
1

4

rN − rP
rP − rS

b = AN
3

4

rN − rP
Kd

qN

where, subscripts N,P, S indicate the northern interface, the cell center, and the

southern interface of a control volume, respectively.

To solve the mass transport equations correctly, the unit of the growth factor

(FGF-2) should be appropriate. In binding kinetics equations described in the next

section, the unit of growth factor is mol/L, which is a very small value, even less

than the stopping criteria. Obviously, this unit is inappropriate. Instead, to solve the

equations, the unit of ng/ml is used, which is much larger than the stopping criteria.

Thus, a unit conversion is required between calculating mass transport equations

PDEs and binding kinetics equations ODEs.

A transient solution is pursued. The linear system is solved by using Stone’s SIP

method [80].

3.3.3 Binding Kinetics Equations

The binding kinetics model is adopted from Forsten-Williams et al. [27], as shown

in Fig. 3.4. It involves a series of molecular activities, including the growth factor
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Figure 3.4: The diagram of binding kinetic pathway.

(FGF-2) binding to its receptors (FGFR and HSPG), some intermediate complexes

and dimers are created, and internalization of those complexes and dimers. Nine

chemical reactions and species are involved [27, 71]. The computational model is

expressed as a set of ODEs shown in Table 3.1 and in Appendix A [20, 27]. Some key

parameters used in simulation are listed in Table 3.2.

These coupled nonlinear ODEs can be solved by the CVODE solver with user-

supplied Jacobian matrix [6]. Readers are referred to Chapter 1 for details.

3.4 Numerical Algorithm

In order to solve those coupling equations (PDEs and ODEs), a numerical algorithm

for simulation has been designed. A schematic algorithm is given in Algorithm 8.

Inside the while loop, first, it computes the velocity u in each grid for the whole

mesh by calling Eq. (3.12); then, solves the binding kinetics ODEs on the north

boundary grids by calling the CVODE solver since the boundary conditions of mass
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Table 3.1: Equations describing the binding reactions in the model.

No Binding Equations

1 dR
dt = −konFRFR+ koffFRC +KoffFHRT − kcRG− kintR+ kintR0

2 dC
dt = konFRFR− koffFRC − kcCH − kcC

2 + 2kucC2 − kintC

3 dC2

dt = 0.5kcC
2 − kucC2 − kintDC2

4 dT
dt = kcRG+ kcCH − koffFHRT − kcT

2 + 2kucT2 − kintT

5 dT2

dt = 0.5kcT
2 − kucT2 + kintDT2

6 dH
dt = −konFHFH + koffFHG+ koffFHRT − kcCH − kintH + kintH0

7 dG
dt = konFHFH − koffFHG− kcRG− kcG

2 + 2kucG2 − kintG

8 dG2

dt = 0.5kcG
2 − kucG2 − kintDG2

9 V dF
dt = −konFRFR+ koffFRC + koffFHRT − konFHFH + koffFHG

Cells line the walls of the hollow fiber tube in the model and growth factor can bind
to both receptors FGFR (R) or HSPG (H) to form complexes (C or G, respectively).
These complexes can dimerize (C2 or G2,) or form heterodimers (T) that can then
form higher order complexes (T2). The equations that describe the binding reactions
are listed as well as the parameters (Table 3.2) and initial conditions used for the
simulations. The initial condition for the FGF-2 concentration (F) was based on the
amount of FGF-2 injected. The concentration is assumed to be uniform across the
entrance. The receptor FGFR and HSPG densities were the initial conditions for R
and H respectively. All other variables had an initial value of zero.

Table 3.2: Parameter values used in simulation.

Parameter Value Meaning(Ref.)
konFR 4.2× 108M−1min−1 ARC for FGF-2 and FGFR [77]
koffFR 0.79min−1 DRC for FGF-2 and FGFR [77]
konFH 1.2× 108M−1min−1 ARC for FGF-2 and HSPG [77]
koffFH 1.37min−1 DRC for FGF-2 and HSPG [20]
koffFHR 0.038min−1 DRC for FGF-2 and HSPG and FGFR [77]

kc 0.001(#/cell)−1min−1 coupling rate constant [33]
kuc 1.0min−1 uncoupling rate constant [33]
kint 0.005min−1 IRC for complexes [77]
kintD 0.078min−1 IRC for dimers [77]
R0 104#/cell initial FGFR density [17, 20, 40]
H0 106#/cell initial HSPG density [17, 20, 40]
Kd 1.57× 10−10m2/sA FGF-2 diffusivity at 37◦C [20]
µ 0.001Pa · sB viscosity of aqueous solution
ρ 1000kg/m3 density of aqueous solution

A Filion & popel (2004), but aqueous solution this study used has different viscosity
B. The relationship between viscosity and diffusivity can be expressed by Stokes-
Einstein-Sutherland equation, that is,Kd = kT

6πµa
, where Kd is the diffusion coeffi-

cient, k is the Boltzmann’s constant, T is absolute temperature, µ is viscosity, and
a is molecular radius. ARC = association rate constant, DRC = dissociation rate
constant, IRC = internalization rate constant.
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Algorithm 8 Numerical algorithm for simulation system

Initialization
t = 0
while t ≤ tend do:

Compute velocities by solving medium flow equations
Solve binding kinetics equations by using CVODE solver
Solve mass transport equation by using finite volume method
Compute growth factor binding(captured, exited, etc.) if user needs
Output results for analysis and visualization if needed
t = t + ∆t

end while

transport equations depend on those ODEs; at last, solves the mass transport equa-

tions in the whole mesh domain by calling SIP or BiCGStab solver, an inner iterative

loop. At this point, it computes the binding information (bound, internalized, exited,

etc.) and outputs those results for analysis and visualization if user needs. At the

end, it moves forward to the next time step and loops again until the target simulation

time is reached.

Since the unit of the growth factor (FGF-2) should be in the unit of mol/L during

the calculation of kinetics binding equations, a very small value. For example, 2.54

ng/ml of the growth factor (FGF-2) equals to 1.411 × 10−10 mol/L. It is too small

to be used to solve mass transport equations. Instead, the unit of ng/ml is used for

the precision of calculation.

In the algorithm above, the coupled equations of three parts actually can be solved

separately, which means different parts can be calculated independently in a given

order. That is why different binding kinetics models can be easily implemented into

the system with trivial efforts. Also, it is possible to make it support more complicated

binding kinetics models, for example, more growth factors and receptors involved.

Due to its intensive computation, it is desirable to make the simulation system

running quickly and efficiently. The current system is implemented with Open Multi-

Processing (OpenMP) and multi-threading techniques to take advantage of multi-

core processors of computers. If the binding occurs in the whole fiber (i.e., there are
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competitive bindings in the fluid and on cell surfaces as well), some kind of parallel

algorithm needs to be implemented by using OpenMP or message passing interface

(MPI) techniques.

3.5 Some Implementation Details

In order to achieve accurate simulation results compared to those obtained from

experiments, several issues have to be addressed, such as: (1) What type of mesh

should be used? uniform or non-uniform? and how large the mesh size is appropriate?

(2) What is the concentration of the growth factor (FGF-2) flowing into the fibers at

a specific time? Obviously, it is a function of time and related to the amount of the

growth factor (FGF-2) injected at inlet reservoir, but what the concentration function

should be with respect to time? (3) How to measure the amount of the growth factor

(FGF-2) or other molecules (bound, internalized, or remained within the fibers) ? (4)

How to calculate the amount of the growth factor (FGF-2) exited?

3.5.1 Mesh Size Selection

Because the binding reactions occur only on the cell surfaces on the wall of the fibers,

a thin layer of the growth factor (FGF-2) near the surface of the hollow-fibers binds

to its receptors (FGFR and HSPG, etc.) on cell surfaces. This cross sectional area is

illustrated in Fig. 3.5 and can be estimated as:

δv = π(R2 − r2n)δx = πδr(2R− δr)δx (3.22)

where δv is the volume of this area, δx is the length in the axial direction, rn is the

radius of the nth grid and δr is the grid size in the radial direction, respectively.

Supposing the cells are distributed evenly on the surface of the wall and packed

tightly, and the cell shape is round with the radius of rc, the total number of cells in

each fiber can be estimated as:

Ncell ≈
2πRL

πr2c
(3.23)
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Figure 3.5: The cross section of a fiber and the mesh schematic diagram.

where R = 0.035cm is the radius of the fiber, and L = 12cm is the length of the fiber.

If a cell size is around 10um in radius, or rc = 10um, then, Ncell ≈ 8.4× 105. Let

Ncell = 8×105, which is the same as the estimation of the experiment. Thus, the total

number of cells in the cartridge is about 16 millions. If δx = 20um is used, the number

of grids in the axial direction N = L/δx, which is around 6000. The number of grids

in the radial direction is set to be 24, that is M = 24 or δr = R/M ≈ 0.001458cm.

The major interest of this study is calculating the mass of proteins (such as FGF-2)

captured. It is appropriate to calculate those values on cell-by-cell basis. Therefore,

a uniform mesh is a better choice, and the mesh could be 6000×24 if the mesh size is

equivalent to the size of cells in the axial direction. So, δv = πδr(2R−δr)δx ≈ 6.279×

10−10 L. There are about 133.33 cells in each δv. Let v = δv/133.33 ≈ 4.721× 10−12

Lcell−1. (v is the volume of space corresponding to one cell.) The parameter V in

Eq. 9 of Table 3.1 can be calculated by the formula:

V = v ×Na ≈ 2.835× 1012#Lcell−1mol−1 (3.24)

where Na is the Avagodro’s number.

It is worth mentioning that the unit of the growth factor (FGF-2) concentration
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Figure 3.6: The diagram of inlet reservoir.

in Table 3.1 should be in mol/L, but it is normally given in the unit of ng/ml (also

preferred in solving mass transport equations). The unit conversion is necessary, and

we simply multiply it by a constant (For FGF-2, it is 5.556× 10−11).

Other possible meshes could be 3000×24, 1500×24, etc. V is kept as a constant.

Another variable Kgf is used as a grid factor. Kgf is equal to the number of cells per

fiber divided by the number of grids in the axial direction.

3.5.2 The Concentration of Growth Factor at Inlet

To more closely link the simulations to the experimental model system, several ad-

ditional assumptions were made. For simplicity, all the 20 fibers are assumed to

have the same concentration function of growth factor at entrance or inlet. In the

experimental system, the growth factor (FGF-2) is injected into the inlet reservoir,

as shown in Fig. 3.6.

It is assumed that the initial concentration of the growth factor (FGF-2) in the

whole reservoir is uniform, and then distributed into the individual hollow-fiber cap-

illaries by the pump. The concentration of the growth factor (FGF-2) in the reservoir

40



www.manaraa.com

is assumed to decrease gradually at each time step as:

ϕn
ent = ϕn−1

ent × v − δv

v
(3.25)

where v is the volume of the inlet reservoir, which is around 0.393 ml (refer to

Fig. 3.6), δv is the volume of fluid flowing into the fibers at each time step, ϕn−1
ent is

the previous and ϕn
ent is the current concentration of the growth factor (FGF-2) in

the reservoir, and ϕ0
ent =

F0

v
, in which F0 is the amount of the growth factor (FGF-2)

injected in the unit of ng.

3.5.3 The Mass of Growth Factor Bound

The kinetics binding is assumed to occur on the cell surfaces only, and the amount of

the growth factor (FGF-2) bound to its receptors (FGFR and HSPG) within the fibers

includes two parts: bound on cell surfaces and internalized. Let Mn be the amount

of the growth factor (FGF-2) bound, M int
n be the internalized part, and M surface

n be

the bound on cell surfaces at the nth time step, we have:

Mn = M int
n +M surface

n (3.26)

First, the number of molecules of the growth factor (FGF-2) bound is determined,

then we multiply it by a constant to obtain the amount of the growth factor (FGF-2)

bound.

Based on deterministic approach and uniform mesh, the number of molecules of

the growth factor (FGF-2) bound at the nth time step Fn can be determined by the

following formulas:

Fn = F int
n + F surface

n (3.27)

F int
n = F int

n−1 +NfKgfdt
N∑
i=1

(kint(C
n
i + T n

i +Gn
i ) + 2kintD(C

n
2,i + T n

2,i +Gn
2,i)) (3.28)

F surface
n = NfKgf

N∑
i=1

(kint(C
n
i + T n

i +Gn
i ) + 2(Cn

2,i + T n
2,i +Gn

2,i)) (3.29)
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where Cn
i , T

n
i , G

n
i are the number of the growth factor (FGF-2) complexes, and Cn

2,i,

T n
2,i, G

n
2,i are the number of the growth factor (FGF-2) dimers at the ith grid in the

axial direction (see Fig. 3.4), kint is the internalization rate constant of complexes,

kintD is the internalization rate constant of dimers, Superscript n means the nth time

step, Nf is the number of fibers in the cartridge, and Kgf is the grid factor.

Supposing the cell density is 800,000 cells per fiber, or 16 millions cells per car-

tridge, if the mesh of 1500 grids in the axial direction is selected, there are about 533

cells in each grid cross sectional area of each fiber. This number is the grid factor,

i.e., Kgf ≈ 533.

Since the molecular weight of the growth factor is w kDa, once the above molecular

number is obtained, to convert the number of molecules to its weight in the unit of

ng, just multiply it by a constant (K = w × 1012/6.022× 1023), that is:

Mn = Fn ×K(ng) (3.30)

Based on the deterministic approach, the mass of any kind of molecule in bio-

chemical reactions can be calculated in a similar way. Generally, the method can be

illustrated as follows:

Supposing two kinds of molecules A and B can be associated to C with the associa-

tion rate constant kon and dissociation rate constant koff , in the meantime, C may

be internalized with rate constant kint, the kinetics equation can be expressed as:

dC

dt
= konAB − koffAB − kintC (3.31)

In a 2D case, if the uniform mesh is used and the mesh size is N × M , and the

binding reaction occurs in all 2D domain, the number of molecules of A bound to B

can be calculated by the formula:

An = k ×
M∑
j=1

N∑
i=1

Cn
i,j + Aint

n (3.32)
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and

Aint
n = Aint

n−1 + k ×
M∑
j=1

N∑
i=1

(∆t× kint × Cn
i,j) (3.33)

where An is the number of molecules of A bound to B in the nth time step, ∆t

is the time step of numerical simulation, Cn
i,j is the number of molecules of C in grid

(i,j) at the nth time step, N and M are the mesh sizes in the axial and the radial

directions, respectively, k is the number of cells in each grid, Aint
n and Aint

n−1 are the

internalized components at the nth and the (n− 1)th time step, respectively.

Again, internalized component is accumulated at each time step.

To calculate the mass of A, we just multiply it by a constant if its molecular

weight is known. To the best of the author’s knowledge, there is no such formula in

the literature before.

3.5.4 The Mass of Growth Factor Flowing Into or Out of the Fibers

In order to control the amount of the growth factor (FGF-2) flowing into the fibers

or calculate the amount of the growth factor (FGF-2) exited, or calculate the total

amount of the growth factor (FGF-2) inside the fibers, it is necessary to figure out

how to calculate the amount of the growth factor (FGF-2) flowing through a cross

section of a fiber at a given time span.

The mass of the growth factor (FGF-2) moving through a fiber at location x in the

axial direction in δt can be integrated by the following formula:

MFGF−2(x) = 2× π

∫ δt

0

∫ R

0

u(r, t)ϕ(r, x, t)rdrdt (3.34)

Numerically, it can be estimated in a similar way by:

MFGF−2(xi) ≈ π ×
M∑
j=1

(r2j − r2j−1)uj(xi)ϕj(xi)δt (3.35)

where δt is the time step, uj(xi) is the axial velocity, ϕj(xi) is the concentration of

the growth factor (FGF-2) on the jth grid in the radial direction and at location xi
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Figure 3.7: Comparison of the growth factor (FGF-2) exited in different mesh sizes.

in the axial direction, and M is the number of grids in the radial direction of the

current mesh.

Eq. (3.35) can be used to estimate the mass of the growth factor (FGF-2) flowing

into or out of a fiber. To calculate the mass of the growth factor (FGF-2) inside one

fiber, the following formula is used:

Minside ≈
N∑
i=1

Mgf (xi) (3.36)

To obtain the mass of the growth factor (FGF-2) inside the whole cartridge, Minside

is multiplied by Nf (=20), the total number of fibers in the cartridge.

3.5.5 Some Considerations for the Simulation

Choose an Appropriate Mesh Size for the Simulation

Generally speaking, larger mesh sizes mean less computational costs. It is desirable to

find larger mesh size without sacrificing accuracy. Three different meshes 1500×24,

3000×24, and 6000×24 were evaluated. Fig. 3.7 is the comparison of the growth

factor (FGF-2) exited using different mesh sizes. There are only slight differences

between these three cases. Other binding parameters, such as the amount of bound,

internalized, and inside the fibers are also quite close between these three mesh sizes.
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Conclusion: The coarsest grid 1500×24 is appropriate for the simulation and is

selected for all the subsequent simulations to save computational costs.

Choose an Appropriate Time Step for the Simulation

Generally, a smaller time step usually leads to more accurate results but longer simu-

lation time, and a larger time step may sacrifice accuracy, but could save simulation

time. It is a trade off. For the current simulations, it is desirable for the fluid to

move forward no more than one grid point within a time step since the simulation is

working on a cell by cell basis. The cells however are only localized on the wall of the

fibers where the velocity in the axial direction u approaches zero. A relatively larger

time step therefore could possibly be used without sacrificing the binding accuracy.

However, large time steps may influence the accuracy of calculating the amount of

the growth factor (FGF-2) flowing into and out of the fibers or the mass transport

equations.

For example, with a flow rate of 0.67 ml/min, or 0.145 cm/s on average, if a

time step of 0.05 second is selected, the fluid would only move forward 0.00725 cm

on average per time step. This is close to the value of one grid size (0.008 cm) in the

axial direction when a 1500×24 uniform mesh is used. Therefore, time step = 0.05

second is appropriate in this case. Even doubling the time step to 0.1 second, there

is no significant impact on the simulation results. Therefore, 0.1 or 0.05 second is

considered an acceptable time step for slower flow rates, such as 0.67 ml/min. For

higher flow rates, time steps should be smaller accordingly. If the time step is too

big, it will cause computational stability issue for higher flow rates.

3.6 Simulation

3.6.1 Flow Rate Impact on Growth Factor Binding

By intuition, people may think that higher flow rates would result in less binding

due to lower residence time in the cell environment. Table 3.3 shows the quantitative
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Table 3.3: The relationship between flow rate and binding.

Flow rate(ml/min) FGF-2 exit(ng) FGF-2 bound(ng)
0.6 3.96 0.016
0.7 4.12 0.0012
0.8 4.26 0.0009
0.9 4.37 0.0007

Initial FGF-2 injected 5.47ng, diffusivity 1.57× 10−10 m2/s, heparinase treated cells,
total simulation time 643 seconds.

relationship between flow rate and the growth factor (FGF-2) binding. Identical

simulation parameters except the flow rate were used. Fig. 3.8 shows the relationship

between flow rate and the amount of binding. The simulation results show that

the higher flow rate, more growth factor exited, less growth factor bound, and more

growth factor bound at the entrance part of the fiber than at other parts.

3.6.2 Diffusivity Impact on Growth Factor Binding

Generally, larger diffusivity or smaller viscosity values will lead to more molecules of

the growth factor (FGF-2) dissipating toward the wall, where cells are located. More

binding will likely occur resulting in less growth factor exiting. Several simulations

were conducted with the same parameters except the diffusivity or viscosity to find

out the quantitative relationship between the two, as shown in Table 3.4.

Diffusivity affects the distribution of the growth factor (FGF-2) bound along the

fiber, as shown in Fig. 3.9. Larger diffusivity will cause more bound in the middle of

the fiber, but a slightly more bound at the entrance or exit of the fiber. Thus, diffu-

sivity affects the amount of the growth factor (FGF-2) bound and larger diffusivity

values will lead to more growth factor (FGF-2) bound to its receptors (FGFR and

HSPG).
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Table 3.4: The relationship between diffusivity and binding.

Diffusivity(cm2/s) Viscosity(cP) FGF-2 exited(ng) FGF-2 bound(ng)
5.22× 10−7 3A 0.72 0.13
1.57× 10−6 1B 0.55 0.22
1.75× 10−6 0.89C 0.53 0.23
2.18× 10−6 0.72D 0.48 0.25

Initial FGF-2 injected 0.92ng, flow rate 0.63 ml/min, total simulation time 715 sec-
onds. Ablood at 25◦C, BThe solution this research used, Cwater at 25◦C, DFilion &
Popel(2004) [20].

3.7 Summary

This chapter presents a numerical solution to describe growth factor-receptor binding

under flow through hollow fibers of a bioreactor. The fluid flow, the kinetics of the

growth factor (FGF-2) binding to its receptors (FGFR and HSPG) and the growth

factor mass transport is modeled by a set of coupled nonlinear partial differential

equations (PDEs) and coupled nonlinear ordinary differential equations (ODEs). A

finite volume method is used to discretize the PDEs. The ODEs are solved by a

stiff ODE solver, the CVODE solver. Overall, second order accuracy in time and

space is achieved with the second order implicit Euler scheme. In order to obtain

a reasonable accuracy of the binding and dissociation from cells, a uniform mesh is

used. To handle pulsatile flow, several assumptions are made including neglecting

any entrance effects, and an analytical approximate solution for axial velocity within

the fibers is obtained.

A computer simulation program has been developed for the simulation of a growth

factor binding to its receptors within the FiberCell Bioreactor Systems, an in vitro

flow cell culture system. Some simulation results have been obtained based on the

basic model [27], such as (1) the current coarsest gird (1500×24) is appropriate for

the simulation; (2) the amount of binding of FGF-2 is proportional to the diffusivity

of the solution and roughly linear proportional to the flow rate; (3) different flow rates
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or diffusion coefficients will affect the profile of the growth factor (FGF-2) outflow

and the distribution of the growth factor (FGF-2) bound on the wall along the fiber

at different time.

The simulation package can be used for any kinetics binding analysis in a similar

flow environment, as long as only one growth factor is injected in the flow. Next,

this simulation package is used to investigate growth factor-receptor binding and

compared with the experiments.

Copyright c⃝ Changjiang Zhang 2011
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Figure 3.8: The relationship between flow rate and the amount of FGF-2 binding.
(A) Cell-bound FGF-2 is shown after 5 min of simulation for various amount of FGF-
2 injected and various flow rates. (B) Cell-bound FGF-2 is shown along the fiber.
1ng FGF-2 was injected at time 0 under different flow rates. Each cell expressed 104

FGFRs and 5× 105 HSPGs initially.
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Figure 3.9: Plot of FGF-2 bound to FGFR and HSPG versus time at the entrance
, middle and exit of the fiber when FGF-2(1ng) is introduced into the fiber under
pulsatile flow at 0.67ml/min with FGF-2 having a diffusivity of 1.67 × 10−10m2/s
(black) or 1.67× 10−9m2/s(red).
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4 Endothelial Cell Capture of Heparin-Binding Growth Factors under
Flow

4.1 Introduction

The bioavailability of molecules as they circulate through the bloodstream is a crucial

factor in their signaling capability. Halflife in circulation can determine the effective-

ness of a drug simply by regulating the opportunities a molecule has to interact with

the vessel wall. Although in vivo measurements are routinely made by researchers

to monitor serum levels of molecules and to determine half-lives, interactions in the

microenvironment are not easily measured or observed. While some molecules may

have a long circulation life, many may have only a single opportunity to interact with

the blood vessel walls before being filtered through the liver or kidneys. In addition,

even molecules with a long circulation life may still face impediments to direct inter-

action with the endothelium. This, for example, is the case with vascular endothelial

growth factor (VEGF) when bound to bevacizumab, a monoclonal antibody to VEGF

[37, 45]. Bevacizumab has been shown to increase the circulating concentration of

VEGF in cancer patients when compared to patients not undergoing therapy because

of the increased half-life of the growth factor-antibody complex; however the complex

is unable to bind to VEGF receptors [31] making delivery of the VEGF question-

able. In order to better understand the vessel microenvironment and to accurately

monitor drug interactions in the context of that microenvironment, better tools are

needed to provide meaningful measurements that can predict the fate of molecules

in circulation. Many important measurements have and continue to be made using

in vitro mammalian tissue culture methods but there are obvious limitations to the

traditional two-dimensional culture approach. In circulation, the influence of flow on

whether a molecule remains in the fluid phase or binds to the vessel wall can be a

dominant factor. This influence cannot be ascertained in static tissue culture studies.

For example, the velocity of blood in the aorta is 400 mm/sec while at the capillary
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level it is less than 1 mm/sec [83]. This reduction in velocity allows the exchange

processes at the capillary level to take place more efficiently [83] and it likely also

affects the activity of molecules in circulation that rely on cell surface binding in

order to fulfill their roles. While direct measurement of this binding process is dif-

ficult, the computer model of this study makes use of a commercial bioreactor with

endothelial-lined hollow tubes operating under pulsatile flow to mimic the vascular

environment architecture and to directly measure the loss of molecules as they pass

through these hollow fibers. A single pass method is used to allow better assessment

of the effect of flow in either retaining molecules in the circulation or permitting their

interaction with vessels. This approach also makes use of a bolus administration,

since this is a typical way in which drugs would be delivered in a clinical setting. The

binding of fibroblast growth factor-2 (FGF-2) to its cell surface receptor (FGFR) and

the role of heparan sulfate proteoglycans (HSPG) in regulating the process have been

of research interest for many years because of their role in angiogenesis, the growth

of new blood vessels from existing vessels. Knowledge of how these processes work

could aid in the development of new therapeutics to control tumor growth and assist

clinically in the treatment of chronic wounds. In order to understand the mechanism

of FGF-2-mediated cell proliferation, a multitude of experimental studies have been

undertaken [3] and, in the past two decades, several computational models of FGF-2

binding to its receptor FGFR and HSPG have been proposed [17, 20, 27, 38, 48, 55].

Insight can be gained through experiment-coupled modeling that could not otherwise

be readily obtained. Nugent and Edelman [55] were among the earliest researchers

to develop a simple model that includes three species, FGF-2, FGFR and HSPG.

They measured kinetic binding rate constants experimentally and used their model

to analyze the data thereby providing a foundation for investigating the complexity

of FGF-2 binding. A similar approach was used by Ibrahimi et al. [38] to investi-

gate stepwise assembly of a ternary FGF-2-FGFR-HSPG complex in conjunction with
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their surface plasmon resonance measurements. Forstern-Williams et al. introduced

more complexity into the FGF-2 binding model with the inclusion of heparin binding

[26], receptor dimerization [27], and formation of alternative HSPG-FGFR species

[28]. Recent models have moved towards including intracellular signaling [29]. With

the exception of work by Filion and Popel [20, 21], which included diffusive trans-

port, previous simulation work has been based on a static tissue culture environment

that may be quite different from the dynamic in vivo environment of blood vessels.

A computational model based on a flow environment was introduced, in which the

competitive binding of FGF-2, FGFR, and HSPG in a pulsatile flow environment was

addressed to mimic blood vessel-like hollow fibers [71, 96].

In this chapter, the model is used to explore how specific parameters such as flow

rate impact FGF-2 capture and receptor binding, and compare simulation results with

experimental studies. Insights with regard to the importance of surface coupling and

ligand depletion zones within the fluid phase were found. The described simulation

package provides a new and valuable way to investigate growth factor capture and

can be easily extended to other biologically relevant molecules and drugs.

4.2 Materials and Methods

4.2.1 Preparation of Bovine Aortic Endothelial Cells (BAECs)

BAECs (passage 10), cryopreserved in liquid nitrogen, were cultured in Dulbecco’s

modified Eagle’s medium (DMEM-low glucose, phenol red-free, Invitrogen Corpora-

tion, Grand Island, NY), supplemented with penicillin (100U/mL, Invitrogen Corpo-

ration, Grand Island, NY), streptomycin (100mg/mL, Invitrogen Corporation, Grand

Island, NY), glutamine (2mM, Invitrogen Corporation, Grand Island, NY), and 5%

newborn calf serum (Invitrogen Corporation, Grand Island, NY). When a sufficient

number of cells were grown (passage 11,13), they were transferred to the hollow fiber

cartridge.
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4.2.2 Preparation and Maintenance of Endothelial Cartridges

The FiberCell polysulfone plus endothelial cartridges (C2025, FiberCell Systems Inc.,

Frederick, MD), also called hollow fiber bioreactors, contain 20 capillaries which are

12 cm long, 700 mm I.D., 300 mm wall, 0.1 mm pore size, 53 cm2 lumen surface

area (Fig. 3.1). They were activated with 70% ethanol (Fisher Scientific, Houston,

TX), followed by multiple washes with sterile distilled water. The cartridges were

then coated using 5 mg/mL fibronectin (Sigma Aldrich, St. Louis, MO) in phosphate

buffered saline (PBS, Invitrogen Corporation, Grand Island, NY). BAECs (passage

11,13) were inoculated into the cartridges (0.7−1×107 cells/cartridge) 24 hours after

the coating and placed in an incubator for 4 hours (rotated 180◦ after 2 hours) without

flow in order to promote cell attachment. The BAEC culture cartridges were then

linked to the FiberCell pump system (FiberCell Systems Inc., Frederick, MD) and

medium circulated through the system at ,2.6 mL/minute (5.2 mm/sec). The flow

system was maintained in the incubator (37oC,5% CO2) at all times except during

the experiment periods. Cell growth and viability was monitored by measurement of

the cell glucose consumption from the medium once a day with OneTouch UltraSmart

blood glucose monitoring system (Lifescan, Inc., Milpitas, CA).

4.2.3 Growth Factor Flow Studies

The flow system and cell-lined cartridges were removed from the incubator, gently

washed once with warmed (37oC) PBS (60 mL), and then maintained in circulating

125 mL serum-free medium (DMEM-low glucose, phenol red-free, supplemented with

0.05% gelatin in PBS) in a sterile room-temperature tissue culture hood (Thermo Sci-

entific, Waltham, MA). After establishing flow at the desired rate (low rate: 0.60,0.68

mL/min (1.2-1.36 mm/sec); high rate: 1.6-1.8 mL/min (3.2-3.6 mm/sec) or 2.9-3.0

mL/min (5.8- 6.0 mm/sec)) with a CellMax Quad pump (Spectrum Laboratories,

Inc.) for about 2 minutes, flow was stopped to allow the growth factor of interest
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(FGF-2 (Sigma Aldrich, St. Louis,MO), EGF (R&D Systems Inc., Minneapolis, MN)

and VEGF (R&D Systems Inc., Minneapolis, MN)) (0.11 mL) to be injected into

the inlet. After the injection, the flow was resumed and the flow medium collected

(two drops/fraction) for the desired time period. The flow pattern was assumed to be

sigmoidal based on previous studies [7, 14]. The cartridges were then gently washed

with warmed PBS supplemented with 0.3 MNaCl (10 mL) followed by one wash with

10 mL PBS and a wash of the whole flow system with PBS (60 mL). The system was

returned to the same culture medium and flow rates as described under Preparation

of BAECs, allowing at least 24 hours before the next experiment. The medium frac-

tions collected during the binding experiments were stored at 4oC and analyzed with

ELISA kits (R&D Systems Inc., Minneapolis, MN) within the next 24,48 hours.

4.2.4 Viscosity Measurements

Dynamic viscosity of the test cell culture medium was measured using a DV-II++

Pro Programmable cone-plate viscometer (cone #CPE-40; Brookfield Engineering

Laboratories; Boston, MA) according to the manufacturers instructions. Viscosity

measurements were made for a range (375 to 750 sec−1) of shear rates (to confirm

Newtonian fluid behavior) at room (i.e., 25oC) and physiologic (i.e., 37oC) tempera-

tures.

4.2.5 Enzymatic Treatment

Heparan sulfate expression was measured in static tissue culture dishes and in the

flow cartridge by heparinase treatment of cells, collection of the cleaved glycosamino-

glycans, and quantitation using a dimethylene blue colorimetric assay [5, 18]. Cells in

static culture contained 4.3±0.31×10−6µg of heparan sulfate/cell and cells in cartridge

hollow fibers contained 1.1±0.09×10−6µg of heparan sulfate/cell, reflecting an 75%

reduction in cell surface heparan sulfate under flow (0.63 mL/min (1.26 mm/sec)).

Heparinase III (0.01 unit/0.11mL, Seikagaku Corp., Japan; 0.2unit/0.11mL, Sigma
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Aldrich, St. Louis, MO), chondroitinase ABC (0.2 unit/0.11mL, Seikagaku Corp.,

Japan) and keratanase (0.33unit/0.11mL, Sigma Aldrich, St. Louis, MO) were uti-

lized to observe their effect on growth factor flow and binding. In some experiments,

the enzymes (heparinase III, chondroitinase ABC and keratanase) were mixed to-

gether as an enzymatic cocktail solution at the above concentrations. Cartridges

were treated for 20 minutes at 37oC,washed with warmed PBS (10 mL), and growth

factor studies performed as described above.

4.2.6 Determination of Non-specific Binding

In addition to binding to receptors of interest, growth factors (such as FGF-2) may

also bind to other sites, such as plastic wall of a fiber. Binding to the receptors of

interest is called specific binding, while binding to the other sites is called nonspecific

binding. Non-specific binding of FGF-2 in the system was determined to be primarily

due to the inlet reservoir. The reservoir chamber was removed from the cartridge,

growth factors were injected into the inlet of the cartridges with a syringe, and flow

was initiated. Fractions were collected as they exited the reservoir. Growth factors

were measured before injection and compared to the sum of the collected fractions.

The difference between the input amount and the amount collected constituted the

nonspecific binding in the experiments. For FGF-2 (1.0±0.1 ng), the amount retained

in the reservoir was 29±2.8% of the FGF-2 added (SD, n= 3). Additional nonspecific

binding within the hollow fibers was assumed to be minimal.

4.2.7 Determination of Growth Factor Concentration in Outflow

The concentrations of FGF-2, EGF, and VEGF in the collected fractions were mea-

sured by ELISA. The flow rate of each experimental run was determined from the

total volume collected divided by the total flow time.
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4.3 Model Development

The computational model is based on the physical dimensions of the bioreactor al-

though the system is scalable to other desired dimensions. The domain of the simula-

tion is the hollow-fiber portion of the cartridge (Fig. 3.1). The computational model

has three coupled parts: (1) the medium flow equations; (2) the convective mass

transport equations of growth factor in the flow; (3) the binding kinetics equations

on the wall of the fibers [27, 71]. In order to solve the coupled equations numeri-

cally and efficiently, the following assumptions are made: (1) the walls of the hollow

fibers are rigid and nonporous; (2) the flow is axisymmetric and laminar; (3) the fluid

is incompressible, Newtonian and isothermal; (4) all of the hollow-fiber capillaries

within the cartridge have the same dimensions, flow rate, cell densities and entrance

conditions; and (5) the cells are packed tightly and distributed evenly on the wall

of the hollow-fiber capillaries. Entrance effects of the flow are ignored [35, 89] and,

consequently, the flow within the fibers is treated as fully developed flow in which

the radial velocity is neglected. A uniform mesh is used. The kinetic pathways are

shown in Fig. 3.4 and the equations and parameter values are included in Table 3.1

and Table 4.1, respectively.

In the experimental system, FGF-2 is injected into the inlet reservoir where it is

assumed to quickly reach a uniform concentration. The concentration of FGF-2 in

the reservoir is assumed to decrease gradually as fluid is pumped into the reservoir

prior to distribution into the capillaries with each time step as:

ϕn
ent = ϕn−1

ent × v −∆v

v
(4.1)

where, v is the volume of the reservoir, ∆v is the volume of fluid flowing into the fibers

at each time step and is time dependent due to pulsatile flow, ϕn
ent is the current and

ϕn−1
ent is the previous concentration of FGF-2 in the reservoir. ϕ0

ent =
F0

v
, where, F0 is

the amount of FGF-2 injected.
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Table 4.1: Parameter values used in simulation.

Parameter Value
konFR 3.2× 108M−1min−1∗

koffFR 0.28min−1∗

konFH 1.2× 108M−1min−1∗

koffFH 0.56min−1&

koffFHR 0.018min−1&

kc 0.0024(#/cell)−1min−1⋆

kuc 0.6min−1⋆

kint 0.005min−1∗

kintD 0.078min−1∗

R0 104#cell−1&

H0 2.5× 105#cell−1%

D 1.67× 10−10m2/s&

µ 0.00094Pa · s%
ρ 1000kg/m3

ρcell 800, 000#fiber−1%

∗ [78] but scaled to 25oC except for kint and kintD.
& [20] but scaled to 25oC except

for R0.
⋆ [49]. % measured.

The pump pulse cycle was measured experimentally and determined to be 36

strokes/min at a flow rate of 1.4 mm/sec. Pulsatile flow is treated in the following

manner. A pulse of fluid volume enters the pre-pump inlet reservoir (0.4 mL volume),

from which a continuous flow of fluid having an axial velocity greater than or equal to

zero enters the cell-lined fibers in the cartridge. The axial velocity is oscillatory but

with only positive terms. Entrance effects are considered negligible [89]. The velocity

of the fluid in the axial direction is determined with the following formula [96]:

u(r, t) ≈ 2qs
NfπR2

(1− r2

R2
)(1 + cosωt) (4.2)

where qs is the average volumetric flow rate, Nf is the number of fibers inside

the cartridge, R is the radius of a fiber, ω = 2π/T is the angular frequency of the

pulsatile flow, and T is the pump pulse cycle.

4.3.1 Criteria for Comparison Between Simulation and Experiment

Good agreement between the simulation and experimental results was determined

based on two criteria: an amount criterion and a curve-matching criterion.
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Amount Criterion

The amount criterion is defined as:

|Mexp −Msim|
M

< 1% (4.3)

where Mexp is the outflow amount of protein determined experimentally, Msim is the

outflow amount determined within the simulations and M is the amount of FGF-2

entering the capillary.

Curve-matching Criterion

The FGF-2 exit profile curve is not a continuous curve but is a series of discrete values

at different time intervals. This makes use of traditional curve matching algorithms

difficult. The curve-matching criterion is calculated in the following way: (1) Align

the initial exit times for the simulations and experiments; (2) Calculates the distance

between points on the two outflow curves using the following formula:

D =

√∑N
i=1(ai − bi)2

N
(4.4)

where N is the total number of time intervals. ai and bi is the amount of FGF-2

exited at the ith time interval in experiment and simulation, respectively. (3) The

curve-matching criterion is defined as:

D

M
< 2% (4.5)

Considering possible errors when recording the time during the experiment and

the second order accuracy of the numerical simulation, it is appropriate to set 2% for

the curve matching and 1% for the amount criteria.

In the simulations, there are 800,000 cells/fiber or 16,000,000cells/cartridge, a

value which was obtained from the experimental system. The tolerance for solving

the mass transport PDEs was set at 10−12. The relative tolerance for solving the

kinetic ODEs was set at 10−8 and the absolute tolerance was set at 10−12.
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4.4 Results

4.4.1 Endothelial Cells Form a Uniform and Confluent Monolayer in Car-
tridge Capillaries

Endothelial cells line blood vessels and are the initial entry point for access of blood-

borne proteins to the underlying tissue. The investigations of this study focused on

flow and the impact it has on endothelial cell capture of growth factors, which are

important regulators of cell and tissue activity. To better approximate the microenvi-

ronment of a blood vessel, this research seeded bovine aortic endothelial cells into the

FiberCell cartridge system and cultured the cells under flow (Fig. 3.1). Cell viability

was confirmed for up to eight weeks and cell density was around 0.3×106#/cm2. The

geometry is clearly more similar to in vivo than typical cell culture dishes but it was

important to obtain a uniform and confluent monolayer of cells within the cartridge

system to correctly perform and analyze experiments. To confirm this, cartridges

were treated with a high salt wash to extrude the cell-based vessel and the cells were

fixed and imaged (Fig. 4.1). An incision was made at one end to expose the lumen

and demonstrate the continuity of the cell layer.

4.4.2 There is Significant Capture of FGF-2 Under Low Flow Rates

The average fluid velocity in human capillaries is 1 mm/sec [83]. This research hy-

pothesized that capture of regulatory growth factors from solution would be signifi-

cant at these flow rates thereby facilitating growth factor activity. Using the lowest

velocity setting with the standard pulsatile pump included with the Cellmax sys-

tem (1.3 mm/sec, 0.65 mL/min), FGF-2 (5.0±0.4 ng) was injected into the cartridge

inlet reservoir and flow was commenced. As shown in Figure 3, there is a delay

in FGF-2 appearance in the outflow corresponding to the time for FGF-2 to travel

through the cartridge and exit the system. The majority of FGF-2 added exited the

cartridge as a large peak approximately 1 mL (or 1.5 min at this flow rate) after
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Figure 4.1: Brightfield and DAPI stained images of endothelial cells from the unit
showing the continuous vessel-type architecture.

flow was initiated. Nonspecific binding within the injection cartridge reservoir was

measured directly (31±2.5%). Specific binding within the celllined hollow fibers ac-

counted for 9±2.5% of total FGF-2 added to the cartridge at this concentration and

13% of the FGF-2 entering the cell-lined fibers, after taking into account non-specific

binding (Fig. 4.2). The results shown in Fig. 4.2(A) are from three independent ex-

periments conducted using three different cartridges illustrating the reproducibility of

the system. Repeated runs conducted using the same cartridge as well as runs using

radiolabeled FGF-2 instead of unlabeled FGF-2 both produced similar results. The

peak appearance time or volume in the outflow from the cartridge was insensitive to

FGF-2 injection concentration in the range studied. However, the size of the FGF-2
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peak correlated with the injection concentration with the highest peak corresponding

to the highest concentration of FGF-2 added (Fig. 4.2(B)). The accuracy of the mea-

surements took into consideration specific losses that occurred with injection (i.e.,

tube, syringe, needle, and reservoir). Rather than averaging datasets with variable

FGF-2 reservoir values, they are presented as discrete results. A plot of total FGF-

2 retained at these discrete concentration points shows a dose responsive binding

curve, reflecting the linear portion of the binding curve expected at subsaturation

ligand concentrations (Fig. 4.2(C)).

4.4.3 Heparinase Treatment Significantly Increases the FGF-2 Outflow

Heparan sulfate proteoglycans (HSPG) are ubiquitous molecules found on virtually

all cells including endothelial cells and have been shown to regulate heparin-binding

growth factor binding and activity in tissue culture [17, 16, 25, 53, 58, 92]. FGF-2 is

a heparin-binding molecule associated with a number of physiologic and pathologic

processes [23] and, therefore, the role of HSPG in regulating FGF-2 retention under

flow was examined. Although the binding affinity of FGF-2 for HSPG has been

shown to be lower than the affinity for the FGF receptor, these HSPG sites can

provide up to a thousand fold more binding sites for FGF-2 [17, 16] significantly

impacting the cell binding ”potential” for heparin-binding growth factors. Cartridges

were treated with heparinase, an enzyme specific for heparin and heparan sulfate, and

FGF-2 outflow quantified. After heparinase treatment, FGF (1 ng) was injected and

pumped through the cartridge. Almost 74% of the total FGF-2 added to the system

was recovered in the outflow, compared to 46% of the total FGF-2 recovered from

the nonheparinase treated cartridge prior to subtraction of non-specific binding. The

amount of FGF-2 retained in the cartridge after heparinase treatment corresponded

to the measured level of nonspecific binding and thus indicated no specific binding

to cell-lined fibers in the absence of HSPGs (Table 4.2). In contrast, 25% of the

FGF-2 pumped through untreated cartridges was retained after subtraction of non-
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Table 4.2: Heparinase and chondroitinase but not keratanase impact FGF-2 output.

Treatment FGF-2 input(ng) % FGF-2 retained flow rate(mL/min)
control 0.95 ± 0.05 25 ± 1.7 0.62 ± 0.02

heparinase 0.92 ± 0.00 0.0 ± 2.9∗ 0.66 ± 0.02
chondroitinase 1.73 ± 0.68 16 ± 4.1∗ 0.65 ± 0.03
keratanase 0.95 ± 0.15 20 ± 7.5 0.62 ± 0.08

Mean ± standard deviation of at least three experimental runs. ∗ indicates signifi-
cantly (p,0.05) different from control.

specific binding. Although FGF-2 can bind to its receptor in the absence of HSPG

stabilization, that binding, based on the apparent KD of the receptor for FGF-2 in the

absence of heparan sulfate, the lower level of FGFR generally found, and the ligand-

receptor exposure time under flow, would be expected to be at least ten-fold lower

than in the presence of HSPG [16] and the data certainly support this. To ensure

that the effect with heparinase under flow was due to the specific removal of heparan

sulfate and not a general effect due to enzymatic treatment of the cartridge or the

enzyme incubation process, the cartridges were treated with keratanase, an enzyme

having no specific known target on these cells. Keratanase, as opposed to heparinase,

had no significant effect on FGF-2 retention (Table 4.2). Interestingly, there was

a small but reproducible reduction ( 9%) after chondroitinase treatment on FGF-2

retention compared to control. Chondroitin sulfate proteoglycans are typically found

on vascular surfaces but FGF-2 has not been shown to bind directly to chondroitin

sulfate [52, 88]. It is not known at this time what the cause for the reduced binding

is, although it has been reported that both chondroitin sulfate and dermatan sulfate

under certain circumstances are able to influence FGF binding [2, 75, 82].

4.4.4 VEGF but not EGF is Impacted by Heparinase Treatment

VEGF, a heparin binding protein, and EGF, which does not bind heparin, were next

tested in this system. Both the initial appearance time and outflow volume for the

protein as well as the general shape of the outflow peak for both VEGF and EGF were
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Table 4.3: VEGF but not EGF retention is impacted by heparinase (experimental).

Treatment Growth Factor input(ng) % Growth Factor Retained flow rate(mL/min)
EGF 1.4 ± 0.15 19 ± 8.1 0.61 ± 0.01

+Enzymes 1.6 ± 0.170 20 ± 7.2 0.62 ± 0.01
VEGF 1.2 ± 0.19 16 ± 5.8 0.66 ± 0.00

+Heparinase 1.0 ± 0.26 -2.5 ± 6.1∗ 0.66 ± 0.02

Mean ± standard deviation of at least three experimental runs. ∗ indicates signifi-
cantly (p,0.05) different from non-enzyme treated case.

similar to FGF-2 (Fig. 4.3). To ensure that the measured effects seen with heparinase-

treatment on FGF-2 retention were due to specific responses of the growth factor to

the removal of heparan sulfate and not a general response by all proteins, flow studies

were done with VEGF and EGF following enzymatic treatment. EGF retention and

outflow were unaffected by treatment with a cocktail of heparinase, chondroitinase,

and keratanase (Table 4.3). Treatment with heparinase without chondroitinase or

keratanase also had no effect on EGF retention or outflow. In contrast, VEGF showed

a significant decrease in specific retention between control and heparinase treated

cartridges (16±5.8% versus 22.5±6.1% VEGF retained) indicating the critical role

HSPG can have in heparin-binding growth factor capture under flow. The lack of a

change in EGF binding or outflow profile under heparinase treatment is supportive

that there are no gross changes in the cell glycocalyx that might impact the shear

stress in the system.

4.4.5 Simulations Capture Critical Properties of Process

Capture of FGF-2 by endothelial cells within the vasculature is a critical step in

growth factor activity and the bioreactor is an excellent tool for investigating the

capture process. However, it has limitations with regard to quantification of cellu-

lar binding behavior. The cartridges are expensive for short-term experiments and

culture time and preparation can be relatively lengthy. Visualization of individual

cell behavior within the culture is not feasible. In addition, the ability to predict the

64



www.manaraa.com

capture of molecules by cells under flow has value across a wide range of areas and

the development of a flow-based tool for the design and testing of mechanisms related

to retention is desirable. The computer model of this research was designed based on

medium flow equations and mass transport equations [12] with cell surface reaction

equations to reflect the cell growth factor interactions (see Materials and Methods-

Model development). To validate the model, simulations were performed using the

variables (i.e., FGF input concentration and flow rate) specific for an experimental

series and a comparison was made. Experimental trials were run in which FGF-2

(0.92 ng) was added to the reservoir, pumped through the cartridge, and outflow

collected and analyzed for FGF-2. FGF-2 in the outflow showed a characteristic peak

outflow approximately 100s after flow was initiated at 0.63 mL/min (1.26 mm/sec)

and 17±6.3% of the input FGF-2 was retained within the cartridge after non-specific

binding was subtracted (Fig. 4.4). Simulations performed using the same input FGF-

2 value and flow rate were run and comparison was made between the simulations and

experimental outflow from control (Fig. 4.4(A)) or heparinase-treated (Fig. 4.4(B))

cartridges. Good agreement was defined based on two criteria; the amount of FGF-2

recovered and the curve similarity. Criteria one requires the relative difference in

FGF-2 outlow from the experimental and simulation studies to be less than 1% while

the second criteria compares the actual amounts of FGF-2 exiting from the exper-

imental and the simulation system (see Materials and Methods). The research did

note that FGF-2 retention with the simulations was very dependent on the level of

HSPGs with higher densities resulting in too much retention via HSPG-FGF-2 bind-

ing and subsequent FGFR coupling while lower HSPG densities resulted in too little

retention. Comparison of simulation results with the heparinase-treated data showed

fine agreement with regard to the criteria when non-specific loss in the reservoir was

subtracted.
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4.4.6 Pulsatile and Steady Flow Results Are Similar at Low Flow Rates

Capillary flow is generally steady, and gradually becomes pulsatile at higher flow

rates. The simulations and in vitro experiments are conducted to compare steady

and pulsatile flow at a low flow rate (0.6 mL/min, 1.2 mm/sec) to determine whether

the model would predict differences between FGF-2 interactions using steady and

pulsatile flow. Simulations predicted no difference in FGF-2 binding at low flow

using pulsatile flow conditions versus steady flow in either the FGF-2 binding down

the cell-lined hollow fiber (Fig. 4.5(A)) or in the profile of the outflow (Fig. 4.5(B)).

In vitro experiments were performed using a syringe pump for steady flow and the

bioreactor’s pulsatile flow pump (Fig. 4.5(C)). FGF-2 outflow measurements indicated

no overall change at 0.6 mL/min (1.2 mm/sec) suggesting that, at low rates typical

of capillary flow, no significant change in FGF-2 interactions takes place.

4.4.7 Simulations Predict Peak FGF-2 Binding at Entrance to the Cell-
lined Hollow Fibers

The experimental system does not allow easy separation between internalized FGF-2

and that bound to the cell surface or visualization of FGF-2 distribution within the

cell-lined hollow fiber. The simulations were used to examine how FGF-2 would be

distributed with respect to time after flow was initiated (Fig. 4.6). At a relatively low

flow rate (0.63 mL/min, 1.26 mm/ sec), the FGF-2 in the reservoir had essentially

all entered the hollow fibers by 150s and the peak outflow of FGF-2 was evident

∼200s after flow was initiated corresponding to the time when the bulk FGF-2 had

exited the hollow fibers. Later times showed cellbound FGF-2 either internalized or

dissociated from the cell surface with little chance to reassociate. The vast majority

of binding is predicted to occur near the entrance to the cell-lined hollow fibers as

opposed to the middle or end of the fibers (Fig. 4.6(B)). The impact of time was more

pronounced in the front section also as fluid entering the hollow fiber after ∼150s was

devoid of FGF-2 (< 0.1% of initial FGF-2). Increasing the diffusion rate for FGF-2 in
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solution by increasing the diffusion coefficient by an order of magnitude is predicted to

have a negligible impact on FGF-2 capture in the front of the capillary but increased

significantly the FGF-2 bound down the length of the cell-lined hollow fiber. This

was due to changes in the depletion zone near the cell-lined walls (Fig. 4.7). After

44 seconds, an FGF-2 depletion zone near the surface was evident which was reduced

when the diffusive transport of FGF-2 was increased. The replenishment of FGF-2

near the wall promoted greater FGF-2 binding as complex formation is a second-order

process and illustrates the importance of surface depletion in growth factor capture.

4.4.8 Flow Rate Impacts FGF-2 Binding

The simulations indicate that depletion near the cell surface impacts binding and

suggests that residence time in the vicinity of the cell surface is important. Therefore,

how flow impacted cell binding of FGF-2 was studied. Simulations predict that cell

binding is significantly diminished with increased flow rate (Fig. 4.8(A)) although the

basic result of high binding at the entrance and reduced binding down the cell-lined

hollow fiber was consistent across flow rates examined. This difference was evident

regardless of the concentration of FGF-2 introduced to the system with the difference

being more pronounced at higher flow rates (Fig. 4.8(B)). Reduction in binding due

to the loss of HSPG is less evident at higher flow rates where the specific binding was

already greatly reduced. This inverse relationship between flow and cell binding is

potentially important especially at these relatively low flow rates. The highest rate

used in the simulations (∼3 mL/min,∼6 mm/sec) is considerably lower than average

arterial flow rates (100-400 mm/sec) in larger vessels of the circulatory system [83]

suggesting that, with a short half-life, retention may be relevant only in small vessels

with lower velocities. Note that simulations were run to a constant time rather than

volume to reduce small fluctuations in retained FGF-2 due to dissociation effects.

Experimentally, the results were consistent but not quantitatively exact with this

model prediction (Table 4.4). FGF-2 retention in the hollow fibers was virtually
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Table 4.4: Increased flow rate eliminates FGF-2 binding (experimental).

Treatment FGF-2 input(ng) % FGF-2 Retained Flow rate(mL/min)
Control 1.1 ± 0.11 6.7 ± 4.6 1.7 ± 0.10

+Heparinase 1.1 ± 0.02 6.7 ± 1.2 1.8 ± 0.05
Control 0.91 ± 0.17 0.5 ± 9.1 2.9 ± 0.13

+Heparinase 0.95 ± 0.25 0.5 ± 10 3.0 ± 0.03

Mean ± standard deviation of at least two experimental runs.

eliminated under medium (∼1.7 mL/min, 3.4 mm/sec) and higher flow rates (3.0

mL/min, 6 mm/sec), a significant reduction compared to binding at 0.62 mL/min

(1.24 mm/sec) (Table 4.2- control group). The simulations, in contrast, did show

some level of binding even at the highest level but this likely reflects the idealized

conditions used for the model system (i.e., uniform receptor and HPSG densities, free

access to coupling between FGF-2 bound molecules). Heparinase treatment showed

no significant further reduction in retention at the higher flow rates in agreement with

the simulation results.

Simulations indicated no difference in FGF-2 binding under the pulsatile flow con-

ditions versus steady flow. Additional experiments were performed using a syringe

pump with steady flow rather than pulsatile flow. FGF-2 outflow measurements indi-

cated no overall change at 0.62 mL/min (1.2 mm/sec). Qualitatively the experimental

results agreed with the simulation predictions for the overall effect of flow rate on re-

tention although the model suggested higher retention levels for the control case and

closer agreement between control and heparinase at both higher flow rates.

4.4.9 Changes in FGF-2 Affinity for HSPG Are Predicted to Have a
Larger Impact on Retention Than Similar Changes in Affinity for
FGFR at Physiological Cell Densities

FGF-2 binding affinity and concentration, along with binding partner density, regu-

lates the capture process for FGF-2 from the fluid phase. Therefore, the simulations

were used to examine how varying the affinity of FGF-2 for either HSPG (Fig. 4.9(A))
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or FGFR (Fig. 4.9(B)) while holding all other parameters at their baseline value

would impact retention. Decreasing the affinity (i.e., increasing KD) for HSPG had

a dramatic effect on retention, reducing it to 40% of baseline capture at the lowest

value examined. The association rate constant had a greater impact than the disso-

ciation rate constant although both followed similar trends. Somewhat surprisingly,

increasing the affinity of the interaction by reducing the value of the dissociation

rate constant of FGF-2 for HSPG did not alter FGF-2 binding likely due to the

strong coupling present between FGFR and HSPG in the presence of FGF-2, making

strict HSPG-dissociation somewhat irrelevant. For the same reason, FGF affinity for

FGFR did not have a strong impact on FGF-2 capture since the vast majority of

FGF-2 interacting with FGFR was via FGF-2-HSPG coupling.

4.4.10 Simulations Predict Binding Site Density is Critical for FGF-2
Retention

Cells typically express significantly more HSPG than FGFR and the research next

asked how varying the cell surface densities of these binding sites would impact FGF-2

capture. In the absence of FGFR, a typical density of HSPG in the cartridge (2.5×

105#/cell) resulted in significant binding of FGF-2 in the absence of FGFR that is

essentially doubled when FGFR density is 1×106#/cell, a two-fold increase in binding

sites (Fig. 4.10(A)). FGFR typically are expressed at densities of approximately 1×

104#/cell thereby keeping the primary signaling receptor at a controlled level. This

is predicted to result in an order of magnitude less overall FGF-2 binding than that

found at typical HSPG levels but which is increased in a similar way when HSPG

are present. The combination of the two surface binding sites (FGFR and HSPG)

is critical. For example, when 1.0 × 104 FGFR are present, the retained FGF-2 is

increased to ∼0.25ng from a value of ∼0.14ng without the FGFR. Looking at cell

binding at the entrance of the cell-lined hollow fiber as a function of time after FGF-

2 has been introduced with constant FGFR (1× 104#/cell) and variable HSPG, this
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research found that there was a significant increase in bound FGF-2 at the higher

HSPG (1×105#/cell) when compared to the lower values and that the FGFR binding

was essentially all coupled to HSPG (Fig. 4.10(B)). When there are fewer HSPG, there

is a lower percentage of coupled binding at least at earlier times as well as lower overall

FGFR complexes.

4.4.11 Simulations Predict Coupling is Key to Effective Capture of FGF-
2

The results with the FGF-2-HSPG affinity simulations and the density studies indi-

cated the importance of coupling in facilitating effective FGF-2-FGFR interactions.

Next, the research looked at how varying the coupling rate constant impacted bind-

ing and internalization using simulations (Fig. 4.11). In the absence of HSPG-FGFR

coupling (kc = 0), there is a reduction in peak binding of FGF-2 and the majority

of FGF-2 bound is not internalized but dissociates and exits from the system in the

outflow. Even with a low level of coupling, the FGF-2 binding and internalization

is dramatically increased until a peak effect is seen with kc = 0.01(#/cell)−1min−1.

Looking at later times in the simulation (Fig. 4.11(B)), it would be found that a

large fraction of the FGF-2 injected is bound during the initial pass and that this

bound FGF-2 is largely internalized with little exiting the system. If coupling be-

tween HSPG and FGFR is eliminated (Fig. 4.11(C)), this is not the case. In this

scenario, the cells bind a smaller but still significant level of FGF-2 during the initial

pass but this FGF-2 is not retained and nearly all of the FGF-2 captured ultimately

exits the system in the outflow.

To further illustrate the importance of the coupling process, simulations were

performed with cell-lined hollow fibers having only HSPG (2.5 × 105#/cell) in the

front 25% of the tube and both FGFR (1× 104#/cell) and HSPG (2.5× 105#/cell)

in the back 75% of the fiber (Fig. 4.12). The entrance area (front 25%) did not

include internalization of FGF-2 by HSPG modeling an ECM-like section, however,
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the overall outcomes are not significantly changed when internalization is included.

HSPGs in this front section were able to capture FGF-2 but there is a significant

rise in retention in the back section where both HSPG and FGFR are present. This

is not simply due to the increase in binding sites due to the addition of FGFR as

increasing HSPG by an equivalent level to that of the HSPG plus FGFR did not lead

to the same increase in retention. Moreover, this increase in retention is lost when

the dissociation rate for FGF-2-FGFR-HSPG is reduced to that of FGF-2-HSPG and

only nominally increased when the coupling rate is eliminated, reflecting the increased

affinity of FGFR compared to HSPG for FGF-2. The effect is evident at both low

and high flow rates.

Finally, The simulations were used to ask whether dissociation from HSPG in an

ECM-like section could lead to increased binding downstream due to slow dissociation

of the growth factor and prolonged availability of the growth factor for downstream

binding. When the HSPG density in the front 25% zone was increased to 5 × 106

HSPG/cell, a large increase in overall retention of FGF-2 in the front section was

evident, resulting in a decrease in FGF binding in the HSPG-FGFR section (back

75%) due to a depletion of FGF-2 in the fluid zone near the cells. This was evident at

both 5 (Table 4.5) and 10 min. In contrast, a low level of HSPG (5×104 or less) in the

entrance section did not lead to significant binding in this zone and results in increased

binding of FGF-2 in the final 75% section. FGF-2 in the fluid phase was at a higher

concentration at later times after FGF-2 injection when there were more HSPG in

the front section due to dissociation from the HSPGs; however, under flow conditions,

this dissociated FGF-2 is not predicted to grow to a high enough concentration to

meaningfully impact downstream receptor binding. This is an important difference

between flow and static culture studies.
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Table 4.5: Simulations predict effect of entrance HSPG zone on FGF-2 capture at 5
min.

HSPG Density in front 25% of Cell-lined Hollow Fiber
5× 106 5× 105 5× 104

Total FGF-2 Retained(ng) 0.39 0.34 0.31
FGF-2 Bound(ng) (Front 25%) 0.16 0.063 0.0022
FGF-2 Bound(ng) (Back 75%) 0.17 0.24 0.28

FGF-2 Internalized(ng) (Back 75%) 0.013 0.017 0.022
FGF-2 in Fluid Phase(ng) 0.029 0.022 0.008

4.5 Discussion

Circulation is an obligatory process for the maintenance of human life. The proper

balance of solid and fluid components, flow and pressure, and chemical content are

all tightly regulated to maintain homeostasis. Within these limits, however, wide

fluctuations can occur. The effects of the regulatory processes that are in place

to deal with these fluctuations are not well characterized. Often the overall effects

can be easily measured but not the changes in the microenvironment that come

together to drive these effects. Although traditional tissue culture studies have added

a wealth of knowledge in such areas, they often lack the capability to emulate the

in vivo environment. In the study of the effect of flow in regulating vessel wall

interactions, for example, three-dimensional studies can provide valuable information.

Three-dimensional studies have been used previously to measure the effects of flow on

cell populations [7, 54, 79, 34, 59]. Such an approach has been chosen in this study

to measure the effect of flow on heparin binding protein delivery. By employing a

single pass method to focus on the initial growth factor-vessel wall interaction, it was

able to more directly measure the effect of flow on the bioavailability of these growth

factors. Substantial binding of all growth factors (FGF-2, VEGF, and EGF) were

measured at the lowest flow rate tested (0.61-0.66 mL/min, 1.22-1.32 mm/sec). Had a

traditional two-dimensional approach been used instead, these factors would have had

few limitations on their rebinding potential since in a closed system they would not
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be subject to the flow that would remove them from the vessel as is typical of normal

circulation. In the case of the heparin binding proteins (FGF-2 and VEGF), removal

of heparan sulfate sites via enzyme digestion resulted in a significant increase in

growth factor outflow (i.e., non-retention within the vessel), suggesting an important

regulatory role for these proteoglycans in ligand capture. This is not necessarily

surprising given the large number of binding sites these proteoglycans provide on

normal cell surfaces. Certainly, it has been shown by many researchers that HSPGs

are important regulators of FGF-2 binding to FGF receptors in tissue culture [92],

although not essential for the interaction [17, 16, 58]. Their importance with regard

to capture under flow has, however, not been shown previously and suggests a critical

role in the circulation.

An equally significant influence on FGF-2, VEGF, or EGF binding, regardless of

heparin binding characteristics however, was the flow rate. By increasing the flow

rate by less than a factor of three (∼1.8 mL/min, 3.6 mm/sec) a significant increase

was seen in growth factor outflow, reflecting the absence of specific binding taking

place on vessel surfaces. A higher flow rate (∼3.0 mL/min, 6 mm/sec) showed no

further increase in FGF-2 outflow above that observed at the medium flow rate with

both showing retention levels equivalent to that evident in the absence of heparan

sulfate. This correlation of flow rate and outflow of growth factors suggests a strong

regulatory effect and an environment in the bloodstream that reduces the probability

of capture significantly at flow rates typically measured in arteries [83]. Although

pulsatile flow is undoubtedly important in increasingly larger vessels and higher flow

rates, both simulations and experiments showed that at the low flow rate typical of

capillaries it had no significant effect on FGF-2 interactions when compared to steady

flow.

The removal of chondroitin sulfate created a small but significant increase in FGF-

2 outflow. This is interesting since a number of published findings found no significant
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affinity between FGF-2 and chondroitin sulfate [52, 88]. It is possible that under flow

conditions subtle changes in chondroitin sulfate modifications allow for some weak

interaction. Others have reported the ability of FGF-2 to bind chondroitin sulfate

under certain circumstances [2, 75, 82]. EGF binding was, however, unaffected by

treatment with a heparinase, chondroitinase and keratanase cocktail suggesting the

chondroitinase effect was not universal. How this effect is manifest is currently under

further study.

The minimum size of capillaries has been shown to be relatively fixed across species

regardless of size [69] and is a basic assumption in the general model of allometric

scaling laws proposed by West et al. [90]. This suggests an optimum environment

for the exchange of gases, nutrients, and the removal of waste products that is likely

rooted in fundamental physical laws. In order to best make use of these environmen-

tal conditions blood flow must also be optimal. The data demonstrate an inverse

correlation between flow rate and probability of capture. Although the presence of

heparan sulfate is crucial to FGF-2 capture at low flow rates, at higher flow rates the

overriding regulator seems to be the flow rate itself which, based on the results, would

all but preclude efficient FGF-2 binding to vessel walls in a single pass under all but

the slowest flow conditions. The expectation of lower binding at increasingly higher

flow rates might be somewhat expected but the relatively small increase in flow rate

required to ablate binding was surprising.

Other influences, such as viscosity, and the presence of competing molecules were

not addressed in this work. These are ongoing studies as the research begins to

add complexity to the system so as to form even more accurate models of circula-

tion. The advantage of this method is that the conditions can be monitored and

controlled much as two dimensional culture systems can be but include the three

dimensional architecture and flow characteristics that are part of normal blood flow.

This approach has obvious potential in the testing of both endogenous molecules and
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pharmaceuticals in order to provide a better perspective of molecular interactions in

the microenvironment of blood vessels.

The importance of HSPGs in FGF-2 binding and signaling has been shown in many

systems [17, 20, 27, 38, 48, 55], and is a generally accepted feature for heparin-binding

growth factors. The research work builds upon those studies and shows the critical

importance of HSPGs in FGF- 2 capture under flow (Fig. 4.2). In this chapter, the

impact of this critical component is explored in detail using the computational model

and show the parameters that regulate this process. In particular the study shows

that the two-step coupling process and the accompanying decrease in dissociation are

essential for effective retention of FGF-2 in a flow situation.

HSPG can mediate both the heparin-binding growth factor-receptor interaction

at the cell surface and the accumulation and storage of these growth factors in the

extracellular matrix [63, 84]. Removal of HSPG from the cell surface by enzymatic

digestion greatly impairs FGF-2 activity in vitro and inhibits neo-vascularization in

vivo [58, 92, 67]. HSPG interacts with FGFR directly [41, 68] and FGF-2 binding to

cell surface HSPG can facilitate FGF-2 binding to FGFR, which in turn can result

in activation of intracellular signaling cascades. Using the simple model under flow,

the study shows in several ways that the coupling step is critical for FGF-2 retention.

Elimination of coupling or decreasing the rate constant describing that interaction

has a dramatic effect on both FGF-2 bound and internalized with essentially no in-

ternalization or effective binding when coupling is eliminated (Fig. 4.11). Reducing

the density of HSPG (Fig. 4.10) or the affinity of FGF-2 for HSPG (Fig. 4.8) signifi-

cantly reduces the amount of FGF-2 bound to both the cell surface and to FGFR. In

addition, simulations with only low levels of HSPG (Fig. 4.10, 4.11 - entrance zone)

or FGFR do not exhibit high retention but, when both HSPG and FGFR are present

(Fig. 4.12), the combination of both increases retention. This is evident independent

of flow rate. The ability of flow to regulate the level of binding suggests how crucial
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the presence of HSPG is on the vessel wall, in order to increase the probability of cap-

ture of heparinbinding molecules especially given the short half-lives of some growth

factors in circulation.

Under the flow condition, simulations predict that the majority of FGF-2 binding

occurs at the entrance to the cell-lined hollow fiber (Fig. 4.6). In the simulations set

up to match the experimental conditions, FGF-2 enters at its highest concentration

and thus is most likely to bind under those conditions. Once binding occurs, there is a

depletion of FGF-2 in the fluid phase near the cell surface (Fig. 4.7). Under flow, this

zone can be replenished via diffusion as increasing the diffusion coefficient increases

the concentration in this zone (Fig. 4.7) and ultimately leads to higher binding down

the cell-lined hollow fiber. The research had postulated that FGF-2 bound in the

entrance zone of the cell-lined hollow fiber would eventually dissociate and rebind

further down the tube but this does not appear to be the case. Even when binding

is extremely high at the entrance, FGF-2 that dissociated from the entrance was

not in high enough concentration to impact downstream binding and was eventually

washed out of the system. In a non-flow system this would likely not be the case and

exemplifies the importance of including flow in studies.

In conclusion, a simulation program for the specific cell investigations of FGF-2

binding under flow [71, 96] performed well when compared to the experimental en-

dothelial cell-lined bioreactor. The simulations suggest that:

(1) The amount of FGF-2 bound to FGFR is dominated by HSPG and the coupling

rate constant, and this triad (FGFR-HSPG-FGF-2) is the key to FGF-2 capture;

(2) The amount of FGF-2 bound is proportional to the diffusivity of the growth factor

in solution and inversely proportional to the flow rate;

(3) Flow rate and diffusivity will affect the FGF-2 outflow profile and the distribution

of FGF-2 bound along the cell-lined hollow fiber wall;

(4) The majority of FGF-2 binding occurs in the entrance zone of the cell-lined hollow

76



www.manaraa.com

fiber;

(5) Most FGF-2 effectively bound by FGFR and HSPG will be internalized rather

than dissociated.

The simulation environment can provide additional information and insight into cap-

ture of FGF-2 that is not easily accessible from experimental work. The model is

applied to in vitro bioreactor system but it has potential to be used for other growth

factors as well as other cell systems where flow and capture are pivotal such as in

drug and biologicals delivery testing.

4.6 Summary

Circulation is an important delivery method for both natural and synthetic molecules,

but microenvironment interactions, regulated by endothelial cells and critical to the

molecule’s fate, are difficult to interpret using traditional approaches. This research

analyzed and predicted growth factor capture under flow using computer modeling

and a three-dimensional experimental approach that includes pertinent circulation

characteristics such as pulsatile flow, competing binding interactions, and limited

bioavailability. An understanding of the controlling features of this process was de-

sired. The experimental module consisted of a bioreactor with synthetic endothelial-

lined hollow fibers under flow. The physical design of the system was incorporated

into the model parameters. The heparin-binding growth factor fibroblast growth

factor-2 (FGF-2) was used for both the experiments and simulations. The compu-

tational model was composed of three parts: (1) medium flow equations, (2) mass

transport equations and (3) cell surface reaction equations. The model is based on

the flow and reactions within a single hollow fiber and was scaled linearly by the total

number of fibers for comparison with experimental results. The model predicted, and

experiments confirmed, that removal of heparan sulfate (HS) from the system would

result in a dramatic loss of binding by heparin-binding proteins, but not by proteins
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that do not bind heparin. The model further predicted a significant loss of bound

protein at flow rates only slightly higher than average capillary flow rates, corrobo-

rated experimentally, suggesting that the probability of capture in a single pass at

high flow rates is extremely low. Several other key parameters were investigated with

the coupling between receptors and proteoglycans shown to have a critical impact on

successful capture. The combined system offers opportunities to examine circulation

capture in a straightforward quantitative manner that should prove advantageous for

biologicals or drug delivery investigations.

Copyright c⃝ Changjiang Zhang 2011
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Figure 4.2: Significant retention of FGF-2 occurs under flow). (A) FGF-2 (5.0±0.4
ng) was injected into the inlet reservoir, pumped through the cartridge at 0.65±0.01
mL/min (1.3 mm/sec), and measured in the output stream samples from three inde-
pendent runs on three separate cartridges. The average retention of FGF-2 within
the cell-lined cartridge was 40±0.5of the three runs shown) with a specific binding
of 9±2.5% (B) FGF-2 ((•) 0.92 ng , (◦) 6.9 ng, (×) 12 ng, and (�) 18 ng FGF-2)
was injected into the initial reservoir, run through the system at 0.64 mL/min, and
the FGF-2 in the output stream measured using ELISA. Results are from individual
runs with 9 independent cartridges. (C) FGF-2 (ng) retained within the cell-lined
cartridge versus the FGF-2 (ng) injected into the system is shown. The flow rate for
this study varied between 0.60 and 0.67 mL/min (1.2 and 1.34 mm/sec respectively).
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Figure 4.3: EGF and VEGF are retained under flow. (A) EGF (1.49 ng) was injected
into the input reservoir, pumped through the system at 0.61 mL/min (1.22 mm/sec),
and EGF quantified in the output flow by ELISA. Data shown are from the same
cartridge either untreated (◦) or enzyme-treated (•). FGF-2 (1.01ng - ×) is shown
for comparison. (B) VEGF was injected into the input reservoir of untreated (0.95ng
- ◦) or heparinase-treated (0.98ng - •) cartridges, run through the system at 0.66
mL/min (1.32 mm/sec), and VEGF quantified in the output flow by ELISA. Data
are representative of at least three runs quantified in Table 4.3
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Figure 4.4: Simulations agree well with FGF-2 outflow measurements. (A) FGF-
2(0.92 ng) was injected into the cartridge reservoir and then flowed through the
cell-lined hollow fibers at 0.63 mL/min (1.26 mm/sec), pulsatile flow. FGF-2 col-
lected from the exit fluid (•) is shown. Simulation results based on cells expressing
1× 104 FGFR/cell and 2.5× 105 HSPG/cell with 32% loss in the entrance reservoir
having the same FGF-2 amount injected at the same flow rate (◦) are also shown.
(B) Similar outflow FGF-2 measurements are shown following FGF-2 (0.92 ng) addi-
tion for heparinase-treated (experimental - •) and simulation results with out HSPG
(simulations - ◦). Simulations were run with cells expressing 1× 104 FGFR/cell and
30% loss in the entrance reservoir.
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Figure 4.5: Simulation and experimental comparison between pulsatile and steady
flow. (A) Simulation results of FGF-2 in the outflow as a function of time for pulsatile
(◦) or steady (•) flow, (B) Simulation results of FGF-2 bound along the endothelial-
lined hollow fiber as a function of distance at 44 sec (pulsatile (◦), steady (pink circle)
flow) and at 88 seconds (pulsatile (2), steady (green square) flow) as a function of
time, (C) Experimental comparison of FGF-2 in outflow using pulsatile (◦) and steady
(•) flow. Simulations and experiments used 1 ng of FGF-2 at a flow rate of 0.6 mL/min
(1.2 mm/ sec) and pulsatile flow was set at ∼36 strokes/min.
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Figure 4.6: Simulations show FGF-2 binding and internalization under flow. For the
simulations, FGF-2 (1 ng) was introduced into the reservoir (30% nonspecific loss)
and sent into the cell-lined hollow fibers under pulsatile flow (0.63 mL/min, 1.26
mm/sec). (A) The sum of all cell surface bound FGF-2 (•) and FGF-2 internalized
(◦) within the celllined hollow fiber are shown. (B) and (C) Plot of % FGFR bound
to FGF-2 versus time at the entrance (•), middle (N) and at the exit (�) cell when
the diffusion coefficient is 1.67×10−10 (B) or 1.67×10−9 m2/s (C). The fluid entering
the system is essentially free of FGF-2 by 150s after flow is initiated.
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Figure 4.7: Simulations predict FGF-2 concentration profile in the cell-lined hollow
fiber is impacted by diffusion. Grayscale images of FGF-2 concentration within the
cell-lined hollow fiber (1×104 FGFR/cell and 2.5×105 HSPG/cell) at 44s after FGF-
2 (1 ng) addition from the reservoir (30% nonspecific loss) at 0.63 mL/min (1.26
mm/sec) with FGF-2 having a diffusion coefficient of 1.67× 10−10 (A) or 1.67× 10−9

m2/s (B). The scale and numbers on the plots indicates the concentration of FGF-2
in ng/mL.
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Figure 4.8: Simulations show reduced binding with increased flow rate. (A) Sim-
ulations for control (•), and HSPG-deficient cells (◦), were run modeling injection
of FGF-2 (1 ng) into the system and run at varied flow rate. 30% non-specific loss
of FGF-2 in the reservoir was incorporated. (B) Cell-bound+internalized FGF-2 as
a function of injection concentration at 5 min as a function of flow rate is shown.
Simulations performed at 0.63 (•), 1.8 (◦), and 3.0 (�) mL/min pulsatile flow(1.26,
3.6, and 6 mm/sec, respectively). Each cell on the cell-lined hollow fiber expressed
1× 104 FGFR/cell and 2.5× 105 HSPG/cell.
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Figure 4.9: Simulations predict binding affinity of FGF-2 for HSPG impacts FGF-
2 capture more than affinity for FGFR. (A) The affinity of FGF-2 for HSPG was
varied in simulations by changing the association rate constant (•) or the dissociation
rate constant (◦). (B) The affinity of FGF-2 for FGFR was varied by changing
the association rate constant (•) or the dissociation rate constant (◦). The FGF-2
captured within the celllined hollow fiber (bound or internalized) at the given KD

value after 5 min. was scaled by that same value from simulations using the base case
KD value (Table 4.1). Arrow indicates base case KD.
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Figure 4.10: Simulations predict cell surface density impacts FGF-2 retention. Simu-
lations were run for FGF-2 (1ng) added to the system (30% non-specific loss) at 0.63
mL/min pulsatile flow (1.26 mm/sec) for 5 min. (A) Cells expressed either 1 × 104

FGFR/cell and variable densities of HSPG (◦) or 2.5 × 105 HSPG/cell and variable
densities of FGFR (•) on the cell-lined hollow fibers. The amount retained within the
system (bound, internalized, and fluid phase FGF-2) is shown. (B) Cells expressed
1× 104 FGFR/cell and 2× 103 (•, ◦), 2× 104 (�,2), or 2× 105 (N,△) HSPG/cell on
the cell-lined hollow fibers and simulation results correspond to entrance cell value
at a given time. Filled symbols correspond to % of FGF-2 bound to FGFR which
are simultaneously bound to HSPG and open symbols correspond to the #/cell of
FGF-2 bound to FGFR and HSPG.
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Figure 4.11: Simulations indicate coupling is critical for FGF-2 retention. (A) FGF-2
bound on cell surfaces plus internalized FGF-2 as a function of time for kc values of
0 (◦), 0.0001(•), 0.001(2), and 0.1(�)(#/cell)−1min−1; (B) and (C) FGF-2 bound
(�), internalized (•), bound plus internalized (◦) and exited (2) under flow with
kc = 0.0024 (B) or 0 (C) (#/cell)−1min−1 following addition of FGF-2 (1ng) at
0.63 mL/min (1.26 mm/sec) pulsatile flow(30% non-specific loss). Capillaries were
simulated to include 1 × 104 FGFR/cell and 2.5 × 105 HSPG/cell on the cell-lined
hollow fibers. 300s corresponds to the time when essentially all of the FGF-2 has
entered the hollow fiber from the reservoir.
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Figure 4.12: Simulations predict both FGFR and HSPG contribute to retention
through FGF-2-mediated coupling. In these simulations, HSPG (2.5×105#/cell) were
expressed on the cell-lined fibers along the entire chamber while FGFR (1×104#/cell)
were expressed only in the cells found in the final 75% of the hollow fiber. FGF-2 (1ng)
was added at time 0 (30% loss in the reservoir) at 0.65 (•), 1.3 (◦), and 2.6 (�) mL/min
pulsatile flow (1.3, 2.6, and 5.2 mm/sec respectively). Cell-bound+internalized FGF-
2 after 5 min of simulation time is shown.
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5 Parallel Simulation of Multiple Proteins Through a Bioreactor
Coupled with Biochemical Reactions

5.1 Introduction

This chapter presents a parallel system to handle complex models, in which more

complexities are added into the binding model to mimic complicated binding mecha-

nisms in human blood vessels or capillaries, as presented in Forsten-Williams recent

models [28].

Instead of only one growth factor in the fluid, FGF-2, more growth factors are

allowed to investigate cross regulation of different growth factors, such as heparin-

binding EGF-like growth factor (HB-EGF), heparin and FGF-2, etc. Instead of oc-

curring on cell surfaces only, competitive bindings now occur in the fluid as well,

adding more complexity for calculating the mass transport equations. Also, the con-

centrations of different growth factors or proteins at the inlet reservoir (see Fig. 3.1)

are complicated due to binding among different growth factors compared with only

one growth factor in the basic model (see Chapters 3 and 4). Parallel methods are

appropriate to solve the whole coupled nonlinear system effectively.

5.2 Modeling Process

Fig. 3.1 is the diagram of the hollow fiber cartridge system used in the experiments.

Different growth factors or ligands are injected into the left sampling port or the inlet

reservoir. The fluid is then pumped into the cartridge and proteins enter into the

20 hollow-fiber capillaries, which are coated with endothelial cells on the wall. Fluid

from the capillaries is pooled in the right reservoir or the outlet reservoir and collected

manually in tubes [71, 96, 99].

The geometric model is based on the experimental one (shown in Fig. 3.1) and

illustrated in Fig. 5.1. The flow is pulsatile. To simplify modeling, the following

assumptions are made:
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Figure 5.1: Diagram of single pass simulation geometric modeling.

(1) All of the 20 hollow-fiber capillaries have the same dimensions, flow, cell densi-

ties, and the endothelial cells are distributed evenly on the wall of the fiber capillaries

and tightly packed;

(2) The fluid is incompressible, Newtonian, viscous and isothermal;

(3) The flow is steady, axis-symmetric and laminar and entrance effects are ignored

[35];

(4) The walls of the hollow-fiber capillaries are rigid and nonporous.

Supposing the mass transports of different growth factors or complexes created to

have the same flow. In other words, they have the same medium flow equations. The

model consists of three coupled parts:

(1) the medium flow equations;

(2) the convection-diffusion mass transport equations of growth factors and their

complexes;

(3) the competitive binding kinetics equations on cell surfaces and in the fluid [27,

71, 96].

The modeling is illustrated in Fig. 5.2.

5.2.1 Medium Flow Equations

Since all the proteins (growth factors plus all the intermediate complexes created in

the fluid) are assumed to have the same flow, as investigated in Chapter 3, Eq. 3.12
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Figure 5.2: The modeling diagram of extended binding system.

is still valid and used for calculating the velocity u in the axial direction.

5.2.2 Mass Transport Equations

Due to the same flow, for each protein in the flow, the mass transport equation is the

same as described in Eq. 3.16. Assuming there are m different kinds of growth factors

and k different kinds of complexes formed among them, the total number of mass

transport equations is S (S = m + k). The mass transport equations are described

as:

∂ϕk

∂t
+

∂(uϕk)

∂x
=

1

r

∂

∂r
(rKd

∂ϕk

∂x
) +

∂

∂x
(Kd

∂ϕk

∂x
) + F (ϕk, t, x) (k ∈ 1 ∼ S) (5.1)

The boundary conditions of each protein in the fluid are the same, that is:

(1) ∂ϕk

∂r
= 0 at r = 0, reflecting symmetry of the flow along the fiber centerline.

(2) ∂ϕk

∂r
= F (ϕk, t, x) at r = R, reflecting binding rate of the kth protein on cell

surfaces on the wall of the fiber.
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(3) ϕk(t) = ϕk,ent(t) at x = 0, assuming well mixed entrance flow, with uniform

concentration along the fiber radius.

The numerical solution of Eq. 5.1 will be performed by the finite volume method

described in section 3.3.2. Since all proteins in the fluid are assumed to have the same

flow properties, the concentration of each protein can be expressed as the following

set of algebraic equations, that is, each protein has the same scalar coefficients in its

mass transport equations:

AWϕk,W + ASϕk,S + APϕk,P + AEϕk,E + ANϕk,N = bk(k ∈ 1 ∼ S) (5.2)

The coefficients in Eq. 5.2 consist of a pentadiagonal matrix [19, 71, 96] and can be

expressed as (refer to section 3.3.2):

AN = −D
δxirn

rN − rP

AS = −D
δxirs

rP − rS

AE = min((ρu)eδrj, 0)−D
δrjrP

xE − xP

AW = −max((ρu)wδrj, 0)−D
δrjrP

xP − xW

AP =
3ρrP δxiδrj

2δt
− (AW + AS + AE + AN)

bk = ((Sk,c+Sk,P )rP δxiδrj +(
2ρϕn

k,P

δt
−

ρϕn−1
k,P

2δt
)rP δxiδrj)−λ(F c

k,e−F u
k,e−F c

k,w+F u
k,w)

Considering a rectangular 2D space (see Fig. 5.1) with I and J grid points in the

axial and the radius directions, respectively, Eq. (5.2) can also be expressed as:

AWϕk,i,j−J + ASϕk,i,j−1 + APϕk,i,j + ANϕk,i,j+1 + AEϕk,i,j+J = bk(k ∈ 1 ∼ S) (5.3)

where, k is the kth protein in the flow, j := 1, 2, ..., IJ , and IJ := I × J = 1500× 24,

AW , AS, AP , AN , AE, bk are scalars. It can be expressed in a matrix form and shown

in Fig. 5.3, where ϕk is represented by xk.

For the solution of this nonsymmetric sparse matrix linear system, the commonly

used methods are: relaxation methods, Alternating Direction Implicit (ADI) methods,
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Figure 5.3: Matrix system to be solved for mass transport equations.

BiConjugate Gradient Stabilized (BiCGStab) methods, and Stone’s SIP methods, etc.

Compared to the above-mentioned methods, the advantages of SIP methods are: (1)

fewer number of iterations for required accuracy; and (2) lower computational cost for

each time step. The SIP’s higher convergence rate is attributed to its more strongly

implicit nature against ADI methods [80], which in turn are more strongly implicit

methods than the SOR method and the point-Jacobi method. Therefore, the SIP

methods are used extensively in computational fluid dynamics.

The coefficients of the matrix are time dependent, and thus the corresponding

linear system must be solved separately for each time step. It is time consuming

so that parallel methods are of great importance, especially when more proteins are

involved. In order to solve those equations efficiently, a high performance parallel

algorithm has been designed and implemented, including parallel discretization and

a parallel SIP solver [19, 60, 80].

5.2.3 Binding Kinetics Equations

Similar to the basic model described in the previous chapters (Chapters 3 and 4),

the complex model also involves a series of molecular activities, including proteins

binding to their receptors to form some intermediate complexes and dimers on cell

surfaces, and competitive binding among proteins to form some complexes in the

fluid as well. Forsten-Williams 2008 models (the non-receptor coupling model and

94



www.manaraa.com

Table 5.1: Model reactions on cell surfaces.

HB-EGF FGF-2 EGF
SH
R → RH SF

R → RF RH + E ↔ CE

SH
P → PH SF

P → PF CE + CE ↔ C2E

SC
P → PC same common sites HSPG No HSPG binding

RH +H ↔ CH RF + F ↔ CF

PH +H ↔ GH PF + F ↔ GF

CH + CH ↔ C2H CF + CF ↔ C2F

C2H + PH ↔ XH C2F + PF ↔ XF

RH +GH ↔ TH RF +GF ↔ TF

RH + PH ↔ TH RF + PF ↔ TF

TH + TH ↔ T2H TF + TF ↔ T2F

XH + PH ↔ T2H XF + PF ↔ T2F

PC +H ↔ GC
H PC + F ↔ GC

F

PC
H +H ↔ GC

H PC
F + F ↔ GC

F

PC
H + CH ↔ TC

H PC
F + CF ↔ TC

F

GC
H +RH ↔ TC

H GC
F +RF ↔ TC

F

C2H + PC
H ↔ XC

H C2F + PC
F ↔ XC

F

TC
H + TC

H ↔ TC
2H TC

F + TC
F ↔ TC

2F

TC
H + TH ↔ TC

HH TC
F + TF ↔ TC

FF

XC
H + PC

H ↔ TC
2H TC

F + PC
F ↔ TC

2F

XH + PC
H ↔ TC

HH TF + PC
F ↔ TC

FF

The first part is the non-receptor-coupling model. Adding second part to the
first one becomes the receptor-coupling model. h=heparin, F=FGF-2, H=HB-
EGF, E=EGF, S=synthesis, R=receptors, C=ligand-receptor complexes, P=HSPG,
T=ligand-receptor-HSPG complexes, C2=dimers of C, X = C2 bound to P , T2=
dimers of T . Unique receptors, proteoglycans and their ligand complexes are dis-
tinguished with a subscript H or F . The common site HSPG and their resulting
complexes are designated with a subscript C.

the receptor coupling model) [28] were adopted as the simulation target, in which

at most four proteins, such as FGF-2, HB-EGF, EGF, and heparin, can be injected

into the system or any combination of them can be injected at the inlet reservoir

simultaneously.

The model reactions on cell surfaces are listed in Table 5.1, and the model reactions

in the fluid are listed in Table 5.2.

There are at most five equations in the fluid listed in Table 5.3. The non-receptor

coupling model involves twenty four equations on cell surfaces listed in Table 5.4, and

the receptor-coupling model involves thirty-two equations on cell surfaces listed in

Table 5.5. The parameters used in simulation are listed in Table 5.6.
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Table 5.2: Model reactions in the fluid.

HB-EGF FGF-2 heparin EGF
h+H ↔ ChH h+ F ↔ ChF h+ F ↔ ChF E

h+H ↔ ChH no binding

h=heparin, F=FGF-2, H=HB-EGF, E=EGF

Table 5.3: Binding equations in the fluid.

1 dF
dt = −khFa hF + khFd ChF

2 dh
dt = −khFa hF + khFd ChF − khHa hH + khHd ChH

3 dChF

dt = khFa hF − khFd ChF

4 dH
dt = −khHa hH + khHd ChH

5 dChH

dt = khHa hH − khHd ChH

Table 5.4: Binding equations on cell surfaces in the non-receptor-coupling model.

1 dRF

dt = SF
R − kFRF

a FRF + kFRF

d CF − kcGFRF + kucTF − kintRF

2 dCF

dt = kFRF
a FRF − kFRF

d CF − kc(CFCF + PFCF ) + kuc(2C2H + TF )− kintCF

3 dC2F

dt = kc(0.5CFCF − C2FPF ) + kuc(XF − C2F )− kintDC2F

4 dTF

dt = kc(RFGF + PFCF − TFTF ) + 2kuc(T2F − TF )− kintDTF

5 dT2F

dt = kc(0.5TFTF +XFPF )− 2kucT2F − kintDT2F

6 dPF

dt = SF
P − kFPF

a FPF + kFPF

d GF − kc(CFPF + C2FPF +XFPF )
+kuc(TF +XF + T2F )− kintPF

7 dGF

dt = kFPF
a FPF − kFPF

d GF − kcRFGF + kucTF − kintGF

8 dXF

dt = kc(C2FPF − PFXF ) + kuc(T2F −XF )− kintDXF

9 dF
dt = (−kFRF

a FRF + kFRF

d CF − kFPF
a FPF + kFPF

d GF − kFPC

a FPC + kFPC

d GC
F )/(NaV )

10 dPC

dt = SC
P − kFPC

a FPC + kFPC

d GC
F − kHPC

a HPC + kHPC

d GC
H

11
dGC

F

dt = kFPC

a FPC − kFPC

d GC
F

12 dE
dt = (−kERH

a ERH + kERH

d CE)/(NaV )

13 dRH

dt = SH
R − kHRH

a HRH + kHRH

d CH − kERH
a ERH + kERH

d CE − kcGHRH + kucTH − kintRH

14 dCE

dt = kERH
a ERH − kERH

d CE − kcCECE + 2kucC2E − kintCE

15 dC2E

dt = 0.5kcCECE − kucC2E − kintDC2E

16 dH
dt = (−kHRH

a HRH + kHRH

d CH − kHPH
a HPH + kHPH

d GH − kHPC

a HPC + kHPC

d GC
H)/(NaV )

17 dCH

dt = kHRH
a HRH − kHRH

d CH − kc(CHCH + CHPH) + kuc(2C2H + TH)− kintCH

18 dC2H

dt = kc(0.5CHCH − C2HPH) + kuc(XH − C2H)− kintDC2H

19 dGH

dt = kHPH
a HPH − kHPH

d GH − kcRHGH + kucTH − kintGH

20 dTH

dt = kc(RHGH + PHCH − THTH) + 2kuc(T2h − TH)− kintDTH

21 dT2H

dt = kc(0.5THTH + PHXH)− 2kucT2H − kintDT2H

22 dXH

dt = kc(C2HPH − PHXH) + kuc(T2H −XH)− kintDXH

23
dGC

H

dt = kHPC

a HPC − kHPC

d GC
H

24 dPH

dt = SH
P − kHPH

a HPH + kHPH

d GH − kc(CHPH + C2HPH +XHPH)
+kuc(TH +XH + T2H)− kintPH
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Table 5.5: Binding equations on cell surfaces in the receptor-coupling model.

1 dRF

dt = SF
R − kFRF

a FRF + kFRF

d CF − kc(GFRF +GC
FRF ) + kuc(TF + TC

F )− kintRF

2 dCF

dt = kFRF
a FRF − kFRF

d CF − kc(CFCF + PFCF + CFP
C) + kuc(2C2H + TF + TC

F )− kintCF

3 dC2F

dt = kc(0.5CFCF − C2FPF − C2FP
C) + kuc(XF − C2F +XC

F )− kintDC2F

4 dTF

dt = kc(RFGF + PFCF − TFTF − TFT
C
F ) + 2kuc(T2F − TF + TC

FF )− kintDTF

5 dT2F

dt = kc(0.5TFTF +XFPF )− 2kucT2F − kintDT2F

6 dPF

dt = SF
P − kFPF

a FPF + kFPF

d GF − kc(CFPF + C2FPF +XFPF +XC
F PF )

+kuc(TF +XF + T2F + TC
FF )− kintPF

7 dGF

dt = kFPF
a FPF − kFPF

d GF − kcRFGF + kucTF − kintGF

8 dXF

dt = kc(C2FPF − PFXF − PCXF ) + kuc(T2F −XF + TC
FF )− kintDXF

9 dF
dt = (−kFRF

a FRF + kFRF

d CF − kFPF
a FPF + kFPF

d GF − kFPC
a FPC + kFPC

d GC
F )/(NaV )

10 dPC

dt = SC
P − kFPC

a FPC + kFPC

d GC
F − kHPC

a HPC + kHPC

d GC
H

−kc(CFP
C + C2FP

C +XFP
C +XC

F PC + CHPC + C2HPC +XHPC +XC
HPC)

kuc(T
C
F + TC

2F + TC
FF +XC

F + TC
H + TC

2H + TC
HH +XC

H)− kintP
C

11
dGC

F

dt = kFPC

a FPC − kFPC

d GC
F − kcG

C
FRF + kucT

C
F − kintG

C
F

12 dE
dt = (−kERH

a ERH + kERH

d CE)/(NaV )

13 dRH

dt = SH
R − kHRH

a HRH + kHRH

d CH − kERH
a ERH + kERH

d CE

−kc(GHRH +GC
HRH) + kuc(TH + TC

H )− kintRH

14 dCE

dt = kERH
a ERH − kERH

d CE − kcCECE + 2kucC2E − kintCE

15 dC2E

dt = 0.5kcCECE − kucC2E − kintDC2E

16 dH
dt = (−kHRH

a HRH + kHRH

d CH − kHPH
a HPH + kHPH

d GH − kHPC

a HPC + kHPC

d GC
H)/(NaV )

17 dCH

dt = kHRH
a HRH − kHRH

d CH − kc(CHCH + CHPH + CHPC)
+kuc(2C2H + TH + TC

H )− kintCH

18 dC2H

dt = kc(0.5CHCH − C2HPH − C2HPC) + kuc(XH − C2H +XC
H)− kintDC2H

19 dGH

dt = kHPH
a HPH − kHPH

d GH − kcRHGH + kucTH − kintGH

20 dTH

dt = kc(RHGH + PHCH − THTH − TC
HTH) + 2kuc(T2h − TH + TC

HH)− kintDTH

21 dT2H

dt = kc(0.5THTH + PHXH)− 2kucT2H − kintDT2H

22 dXH

dt = kc(C2HPH − PHXH − PCXH) + kuc(T2H −XH + TC
HH)− kintDXH

23
dGC

H

dt = kHPC

a HPC − kHPC

d GC
H − kcG

C
HRH + kucT

C
H − kintG

C
H

24 dPH

dt = SH
P − kHPH

a HPH + kHPH

d GH − kc(CHPH + C2HPH +XHPH +XC
HPH)

+kuc(TH +XH + T2H + TC
HH)− kintPH

25
dTC

H

dt = kc(G
C
HRH + PCCH − TC

HTC
H − TC

HTH) + kuc(2T
C
2H + TC

HH − 2TC
H )− kintT

C
H

26
TC
2H

dt = kc(0.5T
C
HTC

H +XC
HPC)− 2kucT

C
2H − kintDTC

2H

27
TC
HH

dt = kc(T
C
HTH +XC

HPH +XHPC)− 3kucT
C
HH − kintDTC

HH

28
XC

H

dt = kc(C2HPC −XC
HPH −XC

HPC) + kuc(T
C
HH + TC

2H −XC
H)− kintDXC

H

29
dTC

F

dt = kc(G
C
FRF + PCCF − TC

F TC
F − TC

F TF ) + kuc(2T
C
2F + TC

FF − 2TC
F )− kintT

C
F

30
TC
2F

dt = kc(0.5T
C
F TC

F +XC
F PC)− 2kucT

C
2F − kintDTC

2F

31
TC
FF

dt = kc(T
C
F TF +XC

F PF +XFP
C)− 3kucT

C
FF − kintDTC

FF

32
XC

F

dt = kc(C2FP
C −XC

F PF −XC
F PC) + kuc(T

C
FF + TC

2F −XC
F )− kintDXC

F
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Table 5.6: Parameter values used in simulation.

Para. Value Meaning
kFRF
a 3.24× 108M−1/min ARC for F & RF

kFRF

d 0.281min−1 DRC for F & RF

kFPF
a 1.19× 108M−1/min ARC for F & PF

kFPF

d 0.556min−1 DRC for F & PF

kFPC

a 7.35× 106M−1/min ARC for F & PC

kFPC

d 0.398min−1 DRC for F & PC

kc 0.0024(#/cell)−1/min coupling rate const
kuc 0.6min−1 uncoupling rate const
kint 0.005min−1 IRC for complexes
kintD 0.078min−1 IRC for dimers
kHRH
a 9.7× 107M−1/min ARC for H & RH

kHRH

d 0.6887min−1 DRC for H & RH

kHPH
a 1.45× 107M−1/min ARC for H & PH

kHPH

d 0.398min−1 DRC for H & PH

kHPC

a 2.01× 106M−1/min ARC for H & PC

kHPC

d 0.398min−1 DRC for H & PC

kERH
a 9.7× 107M−1/min ARC for E & RH

kERH

d 0.24min−1 DRC for E & RH

khFa 4.2× 105M−1/min ARC for h & F
khFd 0.01min−1 DRC for h & F
khHa 4.2× 105M−1/min ARC for h & H
khHd 0.01min−1 DRC for h & H
RF0 104#/cell initial RF density
RH0 104#/cell initial RH density
PF0 17600#/cell initial PF density
PH0 4200#/cell initial PH density
PC
0 232400#/cell initial PC density

Kd 1.67× 10−10m2/s F diffusivity at 25◦C
µ 0.00094Pa · s viscosity of fluid
ρ 1000kg/m3 density of fluid

ARC = association rate constant, DRC = dissociation rate constant, IRC = inter-
nalization rate constant, h = heparin, F = FGF-2, H = HB-EGF, E = EGF, RF

= FGFR, RH = EGFR, PF = unique FGF-2 binding HSPG, PH = unique HB-EGF
binding HSPG, PC = common HB-EGF and FGF-2 binding HSPG, rate constants
are scaled to 25◦C.
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Figure 5.4: Column-wise stripping for processors domain partition. (◦) and (•) points
are boundary points between processors. P0 has no (•) points and PN−1 has no (◦)
points.

5.3 Parallel Design and Implementation

5.3.1 Parallel Discretization

After discretization, a set of algebraic equations are obtained, as shown in Eq. 5.3.

In the whole domain (see Fig. 5.1), the coefficients of Eq. 5.3 should be recalculated

or updated at each time step.

This research takes the advantage of the mesh shape (1500 × 24), that is, the

number of rows is much less than that of columns, to allocate the processors using

column-wise stripping as shown in Fig. 5.4 to keep the total communication costs

low and the load balanced among processors compared to other domain decompo-

sition techniques, such as block checker-board processor partitions, where both row

and column boundary data need to be exchanged between processors and also some

processors do not have cell surfaces binding due to its position only on the north

boundary or the wall of fibers.

In the above partition, each processor has no boundary rows and just has two

boundary columns, the first and the last columns, except the left most and the right

most processors P0 and PN−1 (assuming N processors). Thus, each processor needs

two boundary columns of data from the left and the right neighboring processors,

except P0 and PN−1.
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AN , AS, and AE are not related to the grids on neighboring processors, and can

be computed concurrently among processors.

AW , AP and the second part of source term bk or bk(2) = λ(F c
k,e−F u

k,e−F c
k,w+F u

k,w)

are related to boundary points and need special treatments. First, AW and bk(2) are

computed in each processor concurrently, then, AW at (◦) points of Pi are replaced

with the AW values of Pi−1, and bk(2) at (◦) points in Pi−1 are added to that of Pi.

Once AW and bk(2) are obtained by each processor, AP and source term bk can be

computed in each processor simultaneously. The parallel algorithm is shown in the

following algorithm.

Algorithm 9 Parallel discretization of mass transport equations

Compute AN and AS in each processor in its subdomain simultaneously.
Compute AE, AW and bk(2) in each processor in its subdomain concurrently.
Exchange boundary data as follows:

Pi−1 sends AW at (◦) points to Pi as the new AW values.
Pi−1 sends bk(2) at(◦)points to Pi,adding to Pi values.

Compute AP and bk in each processor in its subdomain concurrently.

5.3.2 Parallel SIP solver

Stone’s strongly implicit procedure (SIP) algorithm has three parts: (a) LU fac-

torization; (b) forward substitution; (c) backward substitution. The sequential SIP

algorithm (refer to 6.2) is illustrated as follows.

For a sparse matrix linear system Ax = b with a pentadiagonal nonzero coefficient

matrix A, shown in Fig. 5.3, Stone proposed an incomplete LU factorization method

[80], that is A+E = LU . E is an error matrix. L and U are lower and upper triangle

matrix, respectively, as shown in Fig. 5.5.

The coefficient matrix A is augmented by an error matrix E, which has two

diagonals lying inside and adjacent to the outer diagonals of A (see Fig. 5.5). Stone’s

SIP algorithm is designed so that terms in Ex are very small [80]. An iteration

parameter α (0 ≤ α < 1) is used to calculate L and U . The parameter α may be a
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Figure 5.5: LU factorization of A+E.

function of the mesh. For simplicity, α is treated as a constant parameter, i.e., users

can set its value before simulation. In Algorithm 10, ϵ is the convergence criteria, r is

Algorithm 10 Stone’s SIP(A, L, U , b, ϵ, maxloop)

1: LU factorization:
for i=1 to I, j=1 to J, do
LW [i, j] = AW [i, j]/(1 + αUN [i, j − J ])
LS[i, j] = AS[i, j]/(1 + αUE[i, j − 1])
P1 = αLW [i, j]UN [i, j − J ]
P2 = αLS[i, j]UE[i, j − 1]
LP [i, j] = AP [i, j] + P1 + P2− LW [i, j]UE[i, j − J ]− LS[i, j]UN [i, j − 1]
UN [i, j] = (AN [i, j]− P1)/LP [i, j]
UE[i, j] = (AE[i, j]− P2)/LP [i, j]

2: initialization: k = 1
3: while ∥r∥2 > ϵ∥InitialResidual∥2 and k < maxloop do
4: forward substitution:

for i=1 to I, j=1 to J, do
r[i, j] = b[i, j] − (AS[i, j]x[i, j − 1] + AW [i, j]x[i, j − J ] + AP [i, j]x[i, j] +
AE[i, j]x[i, j + J ] + AN [i, j]x[i, j + 1])
Y [i, j] = (r[i, j]− LS[i, j]Y [i, j − 1]− LW [i, j]Y [i, j − J ])/LP [i, j]

5: backward substitution:
for i=I to 1, j=J to 1, do
δ[i, j] = Y [i, j]− UN [i, j]δ[i, j + 1]− UE[i, j]δ[i, j + J ]

6: update solution:
x[i, j] = x[i, j] + δ[i, j]

7: k = k + 1
8: end while

the residual, maxloop is the maximum number of iterations, and δ is the correction.

The same array is used for r, Y and δ to save memory cost.

Based on the domain partition scheme (refer to Fig. 5.4), there is a boundary de-

pendency between processors in LU factorization and forward substitution, as shown
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Figure 5.6: Boundary dependency between processors in factorization and forward
substitution.

in Fig. 5.6. Only after the left processor finishes calculating the boundary points and

sends them to the right processor, the right one can start to compute. This process

continues up to the last processor [60, 80]. Backward substitution has similar fashion

but in the reverse order. Basically, by using the pipeline technique, it is trivial to

implement a naive parallel Stone’s SIP solver. Reeve et al. proposed a parallel SIP

algorithm, in which a red-black approach for forward and backward substitutions is

presented [60]. This study proposed an overlapped Jacobi iteration method. Instead

of using the red-black approach for forward and backward substitutions, let each pro-

cessor do forward and backward substitutions concurrently in each iteration and use

previous boundary values of neighboring processors. After each iteration, boundary

data are exchanged among processors. In forward substitution, only (◦) points of

Y(i,j) are transferred, while in backward substitution, only (•) points of Y(i,j) are

transferred (see Fig. 5.4 and Algorithm 10). The Y (i, j) can also be used for δ(i, j)

to save memory cost.

After forward and backward substitutions, the boundary points of current solution

should be exchanged among processors. If the relative error is still larger than the pre-

set stopping criteria in the inner loop, it will loop until reaching the preset maximum

number of loops or the relative error is less than the preset stopping criteria.

The overall speedup is measured for forward and backward substitutions using

two techniques, respectively. The results are shown in Fig. 5.7. It is found that the
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Figure 5.7: Speedup factors using the overlapped Jacobi iteration and pipeline tech-
niques. The results are based on simulation of FGF-2 alone moving through the
bioreactor for 300 seconds in single pass simulation, non-receptor-coupling model,
and the software is running on the DLX high performance cluster at the University
of Kentucky.

overlapped Jacobi iteration method has better speedup than the pipeline technique.

The overlapped Jacobi iteration may need more iterations than the pipeline does,

but actually is much faster due to simultaneous computation among processors. The

overlapped Jacobi iteration method could be applied to speed up similar pipeline

methods and save computational costs significantly (refer to Chapter 6 for details).

The computational cost depends mainly on the number of growth factors involved

and the expected temporal goal to be simulated. It also depends on the time step

used for simulation. If more growth factors are involved in the fluid, and the binding

is studied for several hours, this parallel algorithm can be used to shorten the overall

simulation time by more than sixty percent if four processors are used. Due to heavy

boundary data exchanges among processors in each time step, simulations with more

than eight processors do not yield better performance in the current DLX cluster

settings at the University of Kentucky, as shown in Fig. 5.8.
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Figure 5.8: Speedup factors comparison between the overlapped Jacobi iteration and
pipeline techniques, and ideal linear. The results are based on the same simulation
settings shown in Figure 5.7.

5.3.3 Parallel Algorithm

Since the whole system is composed of a series of coupled nonlinear PDEs and ODEs,

the order of calculation of those equations is important. First, ODEs in the fluid

(equations shown in Table 5.3) are calculated by the CVODE to update the concen-

trations in each grid. Second, binding ODEs on cell surfaces (equations shown in

Table 5.4 or Table 5.5) are calculated , and the solution in each grid on north bound-

ary is used as the boundary condition for mass transport equations of each protein

in the fluid. At this point, mass transport equations of each protein in the fluid are

calculated to get the new concentration of each protein in each grid. A sequential

CVODE solver combined with a parallel scheme obtains an efficient solution for mass

transport equations in the whole domain. The parallel algorithm for the whole system

is illustrated in Algorithm 11.

In the while loop, the flow velocity equations are calculated first, then the binding

ODEs in the fluid are calculated followed by the calculation of binding ODEs on cell

surfaces. Actually, the sequence of calculation of the above three kinds of equations

is not critical, and they can be calculated in any order without noticeable differences.

After the solutions of the above equations are obtained, the mass transport equations

of different proteins in the fluid are solved iteratively in parallel. A for loop is used
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Algorithm 11 Parallel algorithm of the simulation system

1: Initialization
2: t = 0
3: while t < tend do
4: Each processor computes velocity u in its subdomain
5: Each processor solves binding ODEs in fluid in its subdomain
6: Each procesor solves binding ODEs on cell surfaces in its subdomain
7: for (i = 1 to W)
8: Solve Mi(mass transport PDEs) for each protein in parallel
9: Perform parallel discretization of mass transport PDEs
10: Update boundary conditions in subdomain concurrently
11: Call parallel Stone’s SIP solver
12: Exchange boundary mass transport data among processors
13: Each processor does calculations for outputting binding information in its sub-

domain if user needs
14: All reduce those binding information to P0 for output
15: P0 saves those output data for analysis and visualization
16: P0 recalculates the concentration of each protein at entrance
17: t = t+∆t
18: end while

to calculate mass transport equations of each protein in the fluid one after another.

For each one, first perform discretization of mass transport equations; second, up-

date boundary conditions; third, call parallel Stone’s SIP solver; and last, exchange

boundary data among processors. All these four steps are performed in subdomain

by each processor in parallel. Once the mass transport equations of all proteins in the

fluid are solved, each processor only has solutions in its subdomain. At this point, if

needed, the binding information can be calculated by each processor and all reduced

to P0, and P0 saves the data for analysis and visualization. Then, P0 recalculates the

concentration of each protein at the inlet reservoir. In the end, it moves forward one

time step and loops again until reaching the target simulation time.
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5.3.4 Time Analysis

If a sequential algorithm is used, the total simulation time can be expressed in the

following formula:

T1 = Tinit1 +
∑

(Tv + Tb + Tm + To1 + To2) ≈
∑

(Tv + Tb + Tm + To1 + To2) (5.4)

For the parallel algorithm, the total simulation time can be expressed as following:

Tp = Tinit2+
∑

(Tv+(Tb+Tm+To1)/p+To2+Tc) ≈
∑

(Tv+(Tb+Tm+To1)/p+To2+Tc)

(5.5)

where, Tinit1 and Tinit2 are the initialization time for sequential and parallel algo-

rithms, respectively, Tv is the time for calculating velocities of the fluid, Tb is the time

for solving binding ODEs on cell surfaces and in the fluid, Tm is the time for solving

mass transport PDEs in the fluid, To1 is the time for calculating output data by each

processors, To2 is the time for saving output data for analysis and visualization by

P0, Tc is the time for inter communications between processors, and p is the number

of processors used.

Therefore, the speedup of parallel algorithm is expressed as:

Sp = T1/Tp ≈
∑

(Tv+Tb+Tm+To1+To2)/
∑

(Tv+(Tb+Tm+To1)/p+To2+Tc) (5.6)

Normally, the simulation time is in minutes or hours, therefore, Tv,To1,and To2 are

very small compared to Tb and Tm. Speedup can be further simplified as:

Sp ≈
∑

(Tb + Tm)/
∑

((Tb + Tm)/p+ Tc) (5.7)

Tc is a dominant factor for the optimization of speedup.

5.4 Some Implementation Details

5.4.1 The Concentration of Proteins at Entrance

Supposing that different proteins are injected into the inlet reservoir at the same time

and bioreactions are known among these proteins, the concentrations of proteins in

the fluid can be calculated in two steps as follows:
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Calculate Concentrations of Proteins by Solving Binding Kinetics ODEs

Method: suppose two proteins p1 and p2 are injected into the inlet reservoir at the

same time with the amount of m1 and m2, respectively. p1 and p2 will form complex

p3 with association rate constant ka. Meanwhile, p3 will dissociate into p1 and p2

with dissociation rate constant kd. Let ϕ1(t), ϕ2(t), ϕ3(t) be the concentration of p1,

p2, and p3 in the reservoir at time t, respectively. They can be calculated by the

following ODEs:

dϕ1(t)

dt
= −kaϕ1(t)ϕ2(t) + kdϕ3(t) (5.8)

dϕ2(t)

dt
= −kaϕ1(t)ϕ2(t) + kdϕ3(t) (5.9)

dϕ3(t)

dt
= kaϕ1(t)ϕ2(t)− kdϕ3(t) (5.10)

with the initial values of ϕ1(0) = m1/v, ϕ2(0) = m2/v, ϕ3(0) = 0, and v is the

volume of the inlet reservoir.

If more than two proteins are injected with different binding kinetics, the method

is similar. The difference is the above ODEs.

Adjust the Concentration of Each Protein

The concentration of each protein needs to be adjusted due to the fluid flowing in

and out of the inlet reservoir at each time step. The following formula is used:

ϕi(n) = ϕi(n− 1)× v −∆vn
v

(5.11)

where, v is the volume of the inlet reservoir, ∆vn is the volume of the fluid flowing

into the fibers at the nth time step, ϕi(n−1) is the previous concentration, and ϕi(n)

is the current concentration of the ith protein (growth factor or complex) in the inlet

reservoir.
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5.4.2 The Mass of Proteins Bound

Protein (growth factor or complex) binding could occur on cell surfaces or in the fluid.

Thus the amount of the ith protein bound in the nth time step Mi(n) includes three

parts: (1) bound on cell surfaces; (2) bound in the fluid; (3) internalized, as shown

in the following formula:

Mi(n) = M fluid
i (n) +M surface

i (n) +M int
i (n) (5.12)

Based on a deterministic approach and the uniform mesh, the number of molecules

of the ith protein bound in the nth time step Fi(n) could be determined by the

formulas, accordingly:

Fi(n) = F int
i (n) + F surface

i (n) + F fluid
i (n) (5.13)

F fluid
i (n) = NfKgf

N∑
k=1

M∑
l=1

Ci,j(k, l, n) (5.14)

F surface
i (n) = NfKgf

N∑
k=1

(
∑

Ci,j(k,M, n) + 2
∑

Gi,j(k,M, n)) (5.15)

F int
i (n) = F int

i (n− 1) +NfKgfdt

N∑
k=1

(kint
∑

Ci,j(k,M, n) + 2kintD
∑

Gi,j(k,M, n))

(5.16)

where, Ci,j(k,M, n) is the number of complexes of the ith growth factor binding to

the jth receptor in the (k,M)th grid (on cell surfaces), at the nth time step, if the

binding exists, and Gi,j(k,M, n) is the number of dimer of the ith protein binding

to the jth receptor in the (k,M)th grid (on cell surfaces), at the nth time step.

Ci,j(k, l, n) is the number of complexes of the ith protein binding to the jth protein

in the (k, l)th grid (in the fluid), at the nth time step, if the binding exists, M and

N are the number of grids in the radius and the axial directions, respectively, kint

is the internalization rate constant of complexes and kintD is the internalization rate

constant of dimers, Nf is the number of fibers in the cartridge, dt is the time step,

and Kgf is the grid factor.
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Figure 5.9: Plot with varied heparin impact on FGF-2 cell surface capture. (1ng
FGF-2, at 600 seconds, 30% loss at inlet, non-receptor-coupling and receptor-coupling
models [28]).

The mass of the ith proteins bound can be calculated by multiplying a constant

Ki if its molecular weight is known [96], that is:

Mi(n) = Ki × Fi(n) (5.17)

5.5 Simulations

The purpose of these simulations is to predict whether competitors for proteoglycans

impact FGF-2 binding in a solution based on both models (non-receptor-coupling

and receptor-coupling models) (see section 5.2.3). The study will look at: (1) soluble

traps, such as heparin; (2) surface competitors, such as HB-EGF; (3) multi-pass

simulations. The conclusions are drawn from the simulation results, which need

further experimental verifications.

5.5.1 Effect of Heparin on FGF-2 Capture

Heparin will bind to FGF-2 directly in the fluid, limiting the available amount of FGF-

2 binding to its receptors on cell surfaces. Fig. 5.9 shows heparin impact on FGF-2

capture under different amounts of heparin. Fig. 5.10 shows FGF-2 captured along

the endothelial-lined hollow fiber as a function of distance under different amounts of
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Figure 5.10: Simulation results of FGF-2 captured along the endothelial-lined hollow
fiber as a function of distance under different amount of heparin. (1ng FGF-2, at 600
seconds, 30% loss at inlet, non-receptor-coupling model [28]).

heparin at 600 seconds. In Fig. 5.9 and Fig. 5.10, it has been found that heparin (or

possibly other solution binding agents) can prevent FGF-2 capture under flow, but it

occurs only at high concentrations (> 100ug).

5.5.2 Effect of HB-EGF on FGF-2 Capture

FGF-2 and HB-EGF can cross regulate receptor binding of the other despite having

unique receptors [28]. Is this conclusion still correct in the flow condition? Also,

the research wants to find out how large the impact would be? In Fig. 5.11, the

amount of FGF-2 are captured under different amounts of HB-EGF, supposing FGF-

2 and HB-EGF are injected simultaneously. Fig.5.12 shows FGF-2 captured along

the endothelial-lined hollow fiber as a function of distance under different amounts of

HB-EGF at 600 seconds. It is shown that the addition of HB-EGF has only a slight

effect on FGF-2 capture and it occurs when HB-EGF is at high concentrations.

5.5.3 HB-EGF Has Only a Minor Impact on Heparin Regulation of FGF-
2 Binding

Fig. 5.13 shows that the addition of HB-EGF has only a minor impact on heparin

regulation of FGF-2 binding.
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Figure 5.11: Plot with varied HB-EGF impact on FGF-2 cell surface capture. (1ng
FGF-2, at 600 seconds, 30% loss at inlet, non-receptor-coupling and receptor-coupling
models [28]).

The research concludes that HB-EGF or other proteoglycan-competitors has very

little effect on FGF-2 capture under a single pass flow.

5.5.4 Multi-pass Simulation

The human blood system is constantly in circulation, which means that when injecting

some drugs into human blood vessels, some of them may bind somewhere in each

circulation, leaving the remaining part to circulate. It is very hard to do experiments

to study a mechanism of this kind. However, by using computer simulation, it is fairly

easy to implement different strategies to simulate this situation, called a multi-pass

simulation.

The multi-pass simulation is designed as follows:

Step 1: In the first few minutes, before all the injected growth factor enters the

entrance port of fibers, the single pass simulation is used, but the growth factor

moving out of the fibers at the outlet is saved in a FIFO queue in each time step.

Step 2: Once all the growth factor has entered the fibers, lets say after 10 minutes,
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Figure 5.12: Simulation results of FGF-2 captured along the endothelial-lined hollow
fiber as a function of distance under different amount of HB-EGF. (1ng FGF-2, at
600 seconds, 30% loss at inlet, non-receptor-coupling model [28]).

the growth factor will be dequeued and enters into the fibers again in each time step.

There is no mixing. In the meantime, the growth factor moving out of the fibers at

the outlet is queued.

The process is illustrated in Fig. 5.14.

The concentration of a growth factor at the inlet reservoir after switching to queue

is:

qinlet(t+ i) = qi (5.18)

where, t is the time when all the initial injected growth factor has entered the fibers

and it is a parameter for user to set up before simulation, and i is the ith time step

after t.

This is one strategy for some special purposes. Generally, some actions on the

growth factor can be applied in the queue, for example, the growth factor in the queue

could be mixed or some kinds of attenuation could be applied to simulate functions

of kidneys or liver if their mechanisms were known, etc. Then, the concentration of

the growth factor at the inlet reservoir after switching to queue becomes:

qinlet(t+ i) = f(qi, t) (5.19)

where f is a function applying on the concentration of the growth factor in the queue,
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Figure 5.13: Plot with varied HB-EGF impact on heparin regulation of FGF-2 cell
surface capture. (1ng FGF-2, 20 ug heparin, at 600 seconds, 30% loss at inlet, non-
receptor-coupling and receptor-coupling models [28]).

and it is time dependent.

5.5.5 Effect of Time on FGF-2 Capture Under Multi-pass

Some multi-pass simulations were conducted based on strategy illustrated in Fig. 5.14

to study the effect of time on FGF-2 capture. Both non-receptor-coupling model and

receptor-coupling model are used. The results are shown in Fig. 5.15. The results

show that the FGF-2 captures are increased with the time in both models and there

is a tendency that most of the FGF-2 will be captured eventually if no attenuation

exists.

5.5.6 Effect of Different Radiuses of Fibers on FGF-2 Capture

The human blood vessels or capillaries are in different sizes of radius, which may have

some critical effects on the growth factor capture. Some simulations were conducted

in different radiuses with the same cell density on the wall of fibers. Some additional

simulation values are listed in Table 5.7 and other parameters are the same as listed in

Table 5.6. Fig. 5.16 shows the simulation results in different radiuses of fibers under
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Figure 5.14: The diagram of a multi-pass simulation design. The average concen-
tration of the growth factor at outlet is saved in a FIFO queue along with the delta
volume of fluid in each time step. Once the original growth factor at inlet is depleted,
switching to the queue, forming a simulation loop, but without mixing the growth
factor in the queue.

Table 5.7: Some values used in simulations of different radiuses.

radius Cell/fiber Ave. flow rate Ave. flow velocity
(um) (#) (ml/min) (mm/s)
2.5 5000 0.0000235 1.0
5.0 10000 0.000094 1.0
10 20000 0.000376 1.0
25 50000 0.00235 1.0
50 100000 0.0094 1.0
100 200000 0.0376 1.0
200 400000 0.1504 1.0
350 700000 0.4606 1.0

two models. The simulation results reveal that when average velocity is 1 mm/s,

similar to blood flow in human capillaries, almost all FGF-2 entered are captured

when the radius is small, such as 2.5, 5 or 10 um. The relative capture (captured

/entered) decreases as the radius increases.

It is worth mentioning that in the simulation, the viscosity is treated as a constant,

but in human capillaries, the viscosity of blood flow depends on the radius of the

capillary it flows through. The Poiseuille’s relationship for viscosity doesn’t hold for

blood flow in capillaries, at least in a range of capillary radiuses (15 µm < r < 150
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Figure 5.15: The effect of time on FGF-2 capture under multi-pass simulation. 1ng
FGF-2 injected at t=0 and 30% loss at inlet as non-specific binding. After 600
seconds almost all FGF-2 entered the fiber(0.7ng), and the FGF-2 at inlet uses the
saved values at queue.

µm). This is called the Fahraeus-Lindqvist effect [15]. This effect would be considered

in the future when conducting in vitro human blood simulations.

5.6 Summary

Since all proteins are assumed to have the same flow, the multi-physics of fluid flow

is modeled by the same incompressible Navier-Stokes equations. The kinetics of bio-

chemical reactions occurs in the fluid and on cell surfaces as well, so they are modeled

by two separate sets of coupled nonlinear ordinary differential equations (ODEs). The

mass transport of different proteins in the fluid is modeled by a distinctive set of cou-

pled nonlinear partial differential equations (PDEs) for each of them.

To solve this computationally intensive system efficiently, a novel parallel algo-

rithm is devised, in which all the numerical computations are solved in parallel,

including parallel discretization of those mass transport equations PDEs and a par-

allel linear system solver. A novel parallel SIP solver is designed. For solving binding

equations ODEs in the whole domain efficiently, a parallel scheme combined with a

sequential CVODE solver is used for the purposes of high performance and simplicity
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Figure 5.16: The effect of different radiuses of fibers on FGF-2 capture under two
models. simulation were run with 1ng FGF-2 injected at t=0, 30% loss at inlet,an
average flow velocity = 1mm/s for all radiuses.

[98].

Some predictions have been obtained based on the parallel system. The research

has found that: (1) heparin or possibly other solution binding agents can effectively

prevent FGF-2 capture under the flow, but it occurs only at high concentrations

(≥ 100µm); and (2) FGF-2 cross regulating receptor binding agents, such as HB-

EGF or possibly other proteoglycan-competitors, have little effect on FGF-2 capture

in single pass flow even at high concentrations. The experiments also confirmed this

conclusion. Further experiments need to be conducted to verify the predictions of

the parallel simulation system. This parallel modeling system can be used to analyze

any other biochemical reactions in a similar flow environment with trivial effort.

Copyright c⃝ Changjiang Zhang 2011
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6 Parallel Stone’s Strongly Implicit Procedure Solver

6.1 Introduction

The modeling of mass transport equations in the flow condition is very important in

binding kinetics analysis. Normally, the finite volume method is appropriate for dis-

cretization of those PDEs. The corresponding system of linear algebraic equations is

represented by a pentadiagonal nonsymmetric matrix. The coefficients of the matrix

are time dependent, and thus the corresponding linear system must be solved sepa-

rately for each time step. It is time consuming so that parallel methods are of great

importance, especially considering that more species are involved. For the solution

of the nonsymmetric sparse matrix linear system in computational fluid dynamics,

SIP methods are used extensively due to their fewer number of iterations for required

accuracy and lower computational costs for each time step (see Chapter 2). There are

several parallel SIP methods proposed [32, 60]. For example, Ladislav, et al. proposed

a parallel algorithm for calculating a 3D diffusion process of the underground water,

including a specific parallel SIP for their problems. Reeve, et al. also proposed a par-

allel SIP method for solving sparse linear equations arising from the finite difference

approximation to partial differential equations. They investigated the sequential SIP

method, and proposed wavefront and red-black MPI-based algorithms; and they con-

cluded that their red-black MPI-based algorithm is more efficient due to half values

updated simultaneously in each pass before exchanging edge values [60]. This study

proposed an overlapped Jacobi iteration algorithm, where, instead of waiting for new

edge values to proceed, the previous edge values are used and all the other values

in its subdomain are updated by each processor simultaneously. Compared to the

pipeline method, the overlapped Jacobi iteration method has higher speedup with

the same accuracy. The study did not compare the red-black algorithm proposed by

Reeve, et al. Based on the overlapped Jacobi iteration method, a general parallel SIP
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solver is built.

6.2 Analysis of Sequential Strongly Implicit Procedure

Stone’s SIP method solves a set of linear equations obtained from the discretization

of some arbitrary elliptic problems using a five point stencil. The matrix system

obtained is shown in Fig. 5.3, and Eq. 6.1.

Ax = b (6.1)

Stone’s SIP method uses the implicit iteration procedure:

(A+ E)xn = (A+ E)xn+1 − (Axn − b) (6.2)

where A + E = LU has a sparse LU factorization. E is an error matrix, which has

two diagonals lying inside and adjacent to the outer diagonals of A (see Fig. 5.5).

Stone’s algorithm is designed so that terms in Ex are very small [80]. An iteration

parameter α (0 ≤ α < 1) is used to calculate L and U. α may be a function of mesh.

Stone’s SIP algorithm consists of the following steps:

step 1. Initial factorization of matrix A into lower and upper triangular matrices L

and U;

step 2. Forward substitution;

step 3. Backward substitution and correction;

step 4. Maximum relative error check.

Steps 2, 3, and 4 are repeated until the maximum relative error difference between

the old and the new solution is within the defined tolerance or the maximum number

of iterations has been reached [60].

6.2.1 LU Factorization

Considering a rectangular 2D space with I, J grid points in the axial and the radius

directions, the code of LU factorization can be expressed as:
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LW (i, j) = AW (i, j)/(1 + αUN(i, j − J))

LS(i, j) = AS(i, j)/(1 + αUE(i, j − 1))

t1 = αLW (i, j)UN(i, j − J)

t2 = αLS(i, j)UE(i, j − 1)

LP (i, j) = AP (i, j) + t1 + t2− LW (i, j)UE(i, j − J)− LS(i, j)UN(i, j − 1)

UN(i, j) = (AN(i, j)− t1)/LP (i, j)

UE(i, j) = (AE(i, j)− t2)/LP (i, j)

The calculation of LW , LS, LP , UN , and UE depends on its left neighboring point of

UN and/or north neighboring point of UE.

6.2.2 Forward Substitution

Similarly, the code of forward substitution can be expressed as:

r(i, j) = b(i, j)−(AS(i, j)x(i, i−1)+AW (i, j)x(i, j−J)+AP (i, j)x(i, j)+AE(i, j)x(i, j+

J) + AN(i, j)x(i, j + 1))

Y (i, j) = (r(i, j)− LS(i, j)Y (i, j − 1)− LW (i, j)Y (i, j − J))/LP (i, j)

The calculation of r depends on its left, right, upper and lower neighboring points of

x. Thus, x needs to be updated in each iteration. The calculation of Y depends on

its left and upper neighboring points of Y . The pipeline technique is appropriate.

6.2.3 Backward Substitution and Correction

The code of backward substitution and correction can be expressed as:

δ(i, j) = Y (i, j)− (UN(i, j)Y (i, j + 1) + UE(i, j)Y (i, j + J))

x(i, j) = x(i, j) + δ(i, j)

The calculation of δ depends on its right and upper neighboring points of Y . Again,

the pipeline technique is appropriate.
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6.3 Parallel SIP Algorithms

Based on the analysis of the sequential code in the previous section and the domain

partition scheme used (refer to Fig. 5.4), a parallel algorithm can be designed as

follows: For LU factorization, the pipeline technique is used in order to get the exact

solution as the sequential algorithm for L and U .

For forward and backward substitutions, two algorithms are designed: one al-

gorithm uses a pipeline method, the other one uses an overlapped Jacobi iteration

method.

6.3.1 Pipeline Algorithm

For forward substitution, each processor has to wait for its left side processor to finish

doing the calculation in order to obtain the new values of Y in left neighboring points

to start the calculation. Pi has to send the boundary values of Y to Pi+1, and only

after Pi+1 receives the data, it can start calculation. A blocking send or receive is

used.

The solution values of x in boundary points are updated in each iteration, so the

calculation of r is the same as the sequential algorithm. Maximum relative error is

calculated by each processor and then the algorithm does a reduction to obtain the

final value.

Similarly, for backward substitution, each processor has to wait for its right side

processor to finish doing the calculation in order to obtain the new values of Y in right

neighboring points to start the calculation. Pi+1 has to send the boundary values of

Y to Pi, and only after Pi received the data from Pi+1, it can start the calculation.

A blocking send or receive is used.

The algorithm is shown below.
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Algorithm 12 Parallel SIP algorithm using pipeline techniques

1: LU factorization by using pipeline technique
2: (Pi starts LU calculation after Pi−1 finishes and Pi receives the left boundary

data sent by Pi−1)
3: while ||Rn+1||2/||xn+1||2 > ε do
4: Forward substitution by using pipeline technique
5: (Pi starts calculation after Pi−1 finishes and Pi receives the left boundary data

sent by Pi−1)
6: Backward Substitution by using pipeline technique
7: (Pi−1 starts calculation after Pi finishes and Pi−1 receives the right boundary

data sent by Pi)
8: Update residual Rn+1 = Rn + A∆xn

9: Update solution xn+1 = xn +∆xn

10: end while

6.3.2 Overlapped Jacobi Iteration Algorithm

For forward substitution, each processor uses the previous values of Y in left neighbor-

ing points to calculate Y instead of waiting for its left side neighboring processor to

send those values, allowing each processor to process concurrently. When all proces-

sors finish the calculation, the boundary points of Y are updated among processors,

i.e., processor Pi sends the boundary values of Y to processor Pi+1. Blocking send

and receive are used.

The solution values of x in boundary points are updated in each iteration, so the

calculation of r is the same as the sequential algorithm. Maximum relative error is

calculated by each processor and then the algorithm does a reduction to obtain the

final value.

For backward substitution, each processor also uses the previous values of Y in

right neighboring points to calculate δ instead of waiting for those neighboring points

to be sent by its right neighboring processor, allowing each processor to process

concurrently. The solution x is corrected based on the δ value. After all the processors

finish the calculation, the boundary points of Y are updated among processors, i.e.,

processor Pi+1 sends the boundary values of Y to processor Pi. Again, blocking send
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and receive are used.

In each iteration, the left and right boundary points of solution x are updated

among processors. That is, processor Pi+1 sends the boundary values of x to processor

Pi, and vice versa.

The algorithm is shown below:

Algorithm 13 Parallel SIP algorithm using overlapped Jacobi iteration technique

1: LU factorization by using pipeline technique
2: (Pi starts LU calculation after Pi−1 finishes and Pi receives the left boundary

data sent by Pi−1)
3: while ||Rn+1||2/||xn+1||2 > ε do
4: Forward substitution by using overlapped Jacobi iteration technique
5: (All processors start calculation at the same time, the left boundary data use

the previous values)
6: Exchange left boundary data between processors
7: Backward Substitution by using overlapped Jacobi iteration technique
8: (All processors start calculation at the same time, the right boundary data

use the previous values)
9: Update residual Rn+1 = Rn + A∆xn

10: Update solution xn+1 = xn +∆xn

11: Exchange right boundary data between processors
12: Exchange solution boundary data among processors
13: end while

6.4 Results

Different runs were conducted up to eight nodes on the same supercomputer using

the above two algorithms. Problem size is fixed to be 1500 × 24. The results are

shown in Fig. 5.7. It shows that the overlapped Jacobi iteration method has better

speedup than the pipeline does. The overlapped Jacobi iteration method may need

more iterations than the pipeline, but it is much faster.

6.5 Summary

A novel parallel SIP solver is designed and two techniques (pipeline and overlapped

Jacobi iteration) are implemented. The simulation results show that the overlapped
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Jacobi iteration method has better speedup. This method could be used to replace

the pipeline technique in similar situations to obtain a better performance.

Copyright c⃝ Changjiang Zhang 2011
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7 Conclusion, Contribution and Future Work

7.1 Conclusion

This dissertation presents the research work in computer modeling and simulation

of biochemical reactions in a flow environment using the deterministic method. The

whole simulation procedure includes: the mathematical modeling, the discretization

of partial differential equations, the solutions of linear and nonlinear systems, and

the scientific visualization. Several typical simulation models are discussed, such

as a basic binding model and a complex binding model. The dissertation work is

summarized as follows.

• First, it introduces a basic novel convection-diffusion-reaction model to simu-

late fibroblast growth factor (FGF-2) binding to cell surface molecules of its

receptor and heparan sulfate proteoglycan (HSPG) and MAP kinase signaling

under flow condition. This model includes three parts: the flow of medium

using incompressible Navier-Stokes equations, the mass transport of FGF-2 us-

ing convection-diffusion transport equations, and the binding and signaling of

growth factors-receptors using chemical kinetic equations. The whole model

consists of a set of coupled nonlinear partial differential equations (PDEs) for

flow and mass transport, and a set of coupled nonlinear ordinary differential

equations (ODEs) for binding kinetics. In order to obtain a reasonable accu-

racy of the binding and dissociation from cells, a uniform mesh is used. To

handle pulsatile flow, several assumptions are made including neglecting any

entrance effects and an analytical solution for axial velocity within the fibers is

obtained. To solve the time-dependent mass transport PDEs, a second order

implicit Euler method is used by finite volume discretization. The ODE sys-

tem is stiff and solved by an ODE solver CVODE using backward differencing

formulation (BDF). The spatial distribution of FGF-2, FGFR, HSPG and their
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binding complexes are obtained and presented.

• After the basic simulation system is built, the growth factor (FGF-2) capture

under flow is analyzed and predicted using this computer modeling and ex-

perimental approach that includes pertinent circulation characteristics such as

pulsatile flow, competing binding interactions, and limited bioavailability. The

experimental module consisted of a bioreactor with synthetic endothelial-lined

hollow fibers under flow. The physical design of the system was incorporated

into the model parameters. The heparin-binding growth factor FGF-2 was used

for both the experiments and simulations. The model is based on the flow and

reactions within a single hollow fiber and was scaled linearly by the total number

of fibers for comparison with experimental results. The model predicted, and

experiments confirmed, that removal of heparan sulfate (HS) from the system

would result in a dramatic loss of binding by heparin-binding proteins, but not

by proteins that do not bind heparin. The model further predicted a significant

loss of bound protein at flow rates only slightly higher than average capillary

flow rates, corroborated experimentally, suggesting that the probability of cap-

ture in a single pass at high flow rates is extremely low. Several other key

parameters were investigated with the coupling between receptors and proteo-

glycans shown to have a critical impact on successful capture. The combined

system offers opportunities to examine circulation capture in a straightforward

quantitative manner that should prove advantageous for biologicals or drug de-

livery investigations.

• The biochemical mechanism in human blood vessels and capillaries is very com-

plicated, where different kinds of growth factors, receptors and different cells

are involved. A complex model system is proposed to handle such cases, in

which more growth factors, receptors and even different cells are allowed. The
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binding kinetics are not only allowed to occur on cell surfaces, but in the fluid

as well. The complex model also includes three major parts similar to the basic

model, but mass transport equations and chemical kinetics are different. First,

the complex model has more types of proteins in the fluid, and thus, more sets

of mass transport equations are included. Next, the binding kinetics occurs in

the fluid as well as on cell surfaces. Therefore, two different sets of ODEs are

needed to handle this situation. In order to solve this coupled nonlinear system

to obtain simulation results within a reasonable waiting period, a special par-

allel simulation program is created based on message passing interface(MPI),

in which a parallel discretization and a parallel linear solver are designed. For

simplicity, a parallel scheme combined with a sequential ODE solver CVODE

is used to solve binding kinetics in the fluid and on cell surfaces. Overall, the

parallel system is stable and some simulation results are obtained. This research

has found that: (1)heparin (or possibly other solution binding agents) can pre-

vent FGF-2 capture under flow, but only at high concentrations (> 100ug); (2)

HB-EGF or other proteoglycan-competitors can have an effect on FGF-2 cap-

ture but it is small under single pass. In the future, more experiments need to be

conducted to verify the correctness and effectiveness of the parallel simulation

system.

7.2 Contribution

The contribution of the author can be summarized in the following:

(1) designed an interactive multi-threading software package running on Windows

operating systems to simulate growth factor-receptor binding and dissociation pro-

cesses in a bioreactor flow environment, in which several issues are solved, such as:

a) deduced an approximate analytical solution for pulsatile flow; b) provided a gen-

eral quantitative formula to calculate growth factor binding and internalization on
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cell surfaces within a fiber based on a uniform mesh and the deterministic method;

c) provided a reasonable formula to calculate the concentration of growth factors at

inlet reservoir; d) solved the nonspecific binding issue based on experimental mea-

surements.

(2) conducted massive simulations based on experimental results and provided two

criteria: the amount criterion and the curve-matching criterion, to determine a cor-

relation between the simulation and experimental results. Based on the two criteria,

the simulation and experimental results have good agreements, indicating the soft-

ware package is trustworthy.

(3) designed a parallel distributed software package with MPI technique running on

cluster machines to simulate multiple growth factors-receptors competitive binding

and dissociation processes in a bioreactor flow environment, in which competitive

bindings can occur on cell surfaces and in the fluid as well, and all the calculations

are parallelized including the parallel discretization and a parallel linear solver. This

parallel software package can be used for any complex binding system in a similar

flow environment. The idea has hints for simulation of binding processes in human

blood vessels or capillaries with multiple proteins and irregular geometry.

(4) parallelized Stone’s SIP solver in two methods: the pipeline and the overlapped

Jacobi iteration method, and found that the latter method has better speedup. This

parallel SIP solver can be used for solving the linear system of sparse matrix with

similar structures.

7.3 Future Work

Some fundamental work has been done that relates to the simulation and modeling

of biological processes in a flow environment. In-depth research needs to be done

to make the simulation as close to human blood vessels or capillaries as possible.

Possible future research directions in protein transport are listed below.
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• Develop a multiphysics mathematical model for simulating ligand-receptor bind-

ing, dissociation and transport in blood circulation using a group of nonlinear

differential equations. In the one phase model of ligand transport presented

in the dissertation, the blood stream is considered as a single phase, and the

proteins are transported passively and their effect to blood flow is neglected.

In the multiphase model, the blood stream may be considered a mixture of

several phases, in which plasma is considered the continuous phase, while protein

molecules are regarded as dispersed phases. The multiphase model allows people

to take a closer look at the motion of protein molecules in the blood stream and

its influence on the fluid dynamic behavior of the mixture of blood and proteins.

The dynamic system can be modeled by a set of partial differential equations,

where each phase has its own continuity and momentum equations.

• The mathematical models and corresponding software packages for proteins

transport prediction in circulation are developed for 2D applications in ax-

isymmetric coordinates. This 2D system may be extended to 3D applications

involved in some complex 3D geometries, such as human blood vessels or capil-

laries, to simulate blood flows in heart and lung, etc. It will be closer to in vivo

simulations but the computational cost could be very high. Efficient parallel

algorithms are still one of the major design goals in those 3D systems. Some

high performance parallel techniques, such as multilevel multigrid acceleration

and efficient preconditioning may be used to achieve the goal of high order ac-

curacy and low computing cost. To be specific, adaptive multilevel multigrid

method can achieve high order accuracy by mesh refinement in large gradient

region and low computing cost by mesh coarsening in small gradient region.

Copyright c⃝ Changjiang Zhang 2011
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Appendix

7.4 A

The basic model [27] studied in Chapter 3 and 4 consists of the following 9 equations,

which describe the rate of components change with respect to time.

dR

dt
= −konFRFR + koffFRC + koffFHRT − kcRG− kintR + kintR0 (7.1)

dC

dt
= konFRFR− koffFRC − kcCH − kcC

2 + 2kucC2 − kintC (7.2)

dC2

dt
=

kc
2
C2 − kucC2 − kintDC2 (7.3)

dT

dt
= kcRG+ kcCH − koffFHRT − kcT

2 + 2kucT2 − kintT (7.4)

dT2

dt
=

kc
2
T 2 − kucT2 − kintDT2 (7.5)

dH

dt
= −konFHFH + koffFHG+ koffFHRT − kcCH − kintH + kintH0 (7.6)

dG

dt
= konFHFH − koffFHG− kcRG− kcG

2 + 2kucG2 − kintG (7.7)

dG2

dt
=

kc
2
G2 − kucG2 − kintDG2, (7.8)

V
dF

dt
= −konFRFR + koffFRC + koffFHRT − konFHFH − koffFHG (7.9)

where F is FGF-2, R is FGFR, C is FGF-2-FGFR complex, H is HSPG, G is FGF-

2-HSPG complex, T is FGF-2-FGFR-HSPG complex, C2 is FGF-2-FGFR dimer, G2

is FGF-2-HSPG dimer, and T2 is FGF-2-FGFR-HSPG dimer.
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